Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9923, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688959

RESUMO

Phosphorylation plays a crucial role in the regulation of many fundamental cellular processes. Phosphorylation levels are increased in many cancer cells where they may promote changes in mitochondrial homeostasis. Proteomic studies on various types of cancer identified 17 phosphorylation sites within the human ATP-dependent protease Lon, which degrades misfolded, unassembled and oxidatively damaged proteins in mitochondria. Most of these sites were found in Lon's N-terminal (NTD) and ATPase domains, though little is known about the effects on their function. By combining the biochemical and cryo-electron microscopy studies, we show the effect of Tyr186 and Tyr394 phosphorylations in Lon's NTD, which greatly reduce all Lon activities without affecting its ability to bind substrates or perturbing its tertiary structure. A substantial reduction in Lon's activities is also observed in the presence of polyphosphate, whose amount significantly increases in cancer cells. Our study thus provides an insight into the possible fine-tuning of Lon activities in human diseases, which highlights Lon's importance in maintaining proteostasis in mitochondria.


Assuntos
Mitocôndrias , Polifosfatos , Protease La , Tirosina , Humanos , Fosforilação , Protease La/metabolismo , Polifosfatos/metabolismo , Mitocôndrias/metabolismo , Tirosina/metabolismo , Microscopia Crioeletrônica , Domínios Proteicos
2.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163221

RESUMO

Mitochondrial proteins are encoded by both nuclear and mitochondrial DNA. While some of the essential subunits of the oxidative phosphorylation (OXPHOS) complexes responsible for cellular ATP production are synthesized directly in the mitochondria, most mitochondrial proteins are first translated in the cytosol and then imported into the organelle using a sophisticated transport system. These proteins are directed mainly by targeting presequences at their N-termini. These presequences need to be cleaved to allow the proper folding and assembly of the pre-proteins into functional protein complexes. In the mitochondria, the presequences are removed by several processing peptidases, including the mitochondrial processing peptidase (MPP), the inner membrane processing peptidase (IMP), the inter-membrane processing peptidase (MIP), and the mitochondrial rhomboid protease (Pcp1/PARL). Their proper functioning is essential for mitochondrial homeostasis as the disruption of any of them is lethal in yeast and severely impacts the lifespan and survival in humans. In this review, we focus on characterizing the structure, function, and substrate specificities of mitochondrial processing peptidases, as well as the connection of their malfunctions to severe human diseases.


Assuntos
Metaloendopeptidases/metabolismo , Metaloendopeptidases/fisiologia , Mitocôndrias/fisiologia , Sequência de Aminoácidos , Proteínas de Ligação a DNA , Endopeptidases , Proteínas de Escherichia coli , Humanos , Proteínas de Membrana , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Peptidase de Processamento Mitocondrial
3.
J Biol Chem ; 297(4): 101155, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480900

RESUMO

Acylation modifications, such as the succinylation of lysine, are post-translational modifications and a powerful means of regulating protein activity. Some acylations occur nonenzymatically, driven by an increase in the concentration of acyl group donors. Lysine succinylation has a profound effect on the corresponding site within the protein, as it dramatically changes the charge of the residue. In eukaryotes, it predominantly affects mitochondrial proteins because the donor of succinate, succinyl-CoA, is primarily generated in the tricarboxylic acid cycle. Although numerous succinylated mitochondrial proteins have been identified in Saccharomyces cerevisiae, a more detailed characterization of the yeast mitochondrial succinylome is still lacking. Here, we performed a proteomic MS analysis of purified yeast mitochondria and detected 314 succinylated mitochondrial proteins with 1763 novel succinylation sites. The mitochondrial nucleoid, a complex of mitochondrial DNA and mitochondrial proteins, is one of the structures whose protein components are affected by succinylation. We found that Abf2p, the principal component of mitochondrial nucleoids responsible for compacting mitochondrial DNA in S. cerevisiae, can be succinylated in vivo on at least thirteen lysine residues. Abf2p succinylation in vitro inhibits its DNA-binding activity and reduces its sensitivity to digestion by the ATP-dependent ScLon protease. We conclude that changes in the metabolic state of a cell resulting in an increase in the concentration of tricarboxylic acid intermediates may affect mitochondrial functions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Protease La/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Protease La/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
4.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528691

RESUMO

The germ cell lineage in mammals is induced by the stimulation of pluripotent epiblast cells by signaling molecules. Previous studies have suggested that the germ cell differentiation competence or responsiveness of epiblast cells to signaling molecules is established and maintained in epiblast cells of a specific differentiation state. However, the molecular mechanism underlying this process has not been well defined. Here, using the differentiation model of mouse epiblast stem cells (EpiSCs), we have shown that two defined EpiSC lines have robust germ cell differentiation competence. However, another defined EpiSC line has no competence. By evaluating the molecular basis of EpiSCs with distinct germ cell differentiation competence, we identified YAP, an intracellular mediator of the Hippo signaling pathway, as crucial for the establishment of germ cell induction. Strikingly, deletion of YAP severely affected responsiveness to inductive stimuli, leading to a defect in WNT target activation and germ cell differentiation. In conclusion, we propose that the Hippo/YAP signaling pathway creates a potential for germ cell fate induction via mesodermal WNT signaling in pluripotent epiblast cells.


Assuntos
Células Germinativas/metabolismo , Camadas Germinativas/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Feminino , Via de Sinalização Hippo/fisiologia , Masculino , Camundongos , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia
5.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360841

RESUMO

Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Neoplasias/genética , Doenças Neurodegenerativas/genética , Processamento de Proteína Pós-Traducional
6.
EMBO Rep ; 22(8): e52553, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34156139

RESUMO

Fine-tuned dissolution of pluripotency is critical for proper cell differentiation. Here we show that the mesodermal transcription factor, T, globally affects the properties of pluripotency through binding to Oct4 and to the loci of other pluripotency regulators. Strikingly, lower T levels coordinately affect naïve pluripotency, thereby directly activating the germ cell differentiation program, in contrast to the induction of germ cell fate of primed models. Contrary to the effect of lower T levels, higher T levels more severely affect the pluripotency state, concomitantly enhancing the somatic differentiation program and repressing the germ cell differentiation program. Consistent with such in vitro findings, nascent germ cells in vivo are detected in the region of lower T levels at the posterior primitive streak. Furthermore, T and core pluripotency regulators co-localize at the loci of multiple germ cell determinants responsible for germ cell development. In conclusion, our findings indicate that residual pluripotency establishes the earliest and fundamental regulatory mechanism for inductive germline segregation from somatic lineages.


Assuntos
Células Germinativas , Mesoderma , Diferenciação Celular , Separação Celular , Fatores de Transcrição
7.
Life (Basel) ; 11(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498615

RESUMO

The major role of mitochondria is to provide cells with energy, but no less important are their roles in responding to various stress factors and the metabolic changes and pathological processes that might occur inside and outside the cells. The post-translational modification of proteins is a fast and efficient way for cells to adapt to ever changing conditions. Phosphorylation is a post-translational modification that signals these changes and propagates these signals throughout the whole cell, but it also changes the structure, function and interaction of individual proteins. In this review, we summarize the influence of kinases, the proteins responsible for phosphorylation, on mitochondrial biogenesis under various cellular conditions. We focus on their role in keeping mitochondria fully functional in healthy cells and also on the changes in mitochondrial structure and function that occur in pathological processes arising from the phosphorylation of mitochondrial proteins.

8.
Biomolecules ; 10(8)2020 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824374

RESUMO

Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.


Assuntos
DNA Mitocondrial/genética , Proteínas HMGB/metabolismo , Doenças Mitocondriais/genética , DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica , Proteínas HMGB/química , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ligação Proteica
9.
J Biomol Struct Dyn ; 38(4): 1054-1070, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30909845

RESUMO

The human cardiac ryanodine receptor (hRyR2), the ion channel responsible for the release of Ca2+ ions from the sarcoplasmic reticulum into the cytosol, plays an important role in cardiac muscle contraction. Mutations to this channel are associated with inherited cardiac arrhythmias. These mutations appear to cluster in distinct parts of the N-terminal, central and C-terminal areas of the channel. Here, we used molecular dynamics simulation to examine the effects three disease-associated mutations to the N-terminal region, R414L, I419F and R420W, have on the dynamics of a model of residues 1-655 of hRyR2. We find that the R414L and I419F mutations diminish the overall amplitude of motion without greatly changing the direction of motion of the individual domains, whereas R420W both enhances the amplitude and changes the direction of motion. Based on these results, we hypothesize that R414L and I419F hinder channel closing, whereas R420W may enhance channel opening. Overall, it appears that the wild-type protein possesses a moderate level of flexibility which allows the gate to close and not easily open without an opening signal. These mutations, however, disrupt this balance by making the gate either too rigid or too loose, causing closing to become difficult or less effective. Small-angle X-ray scattering studies of the same 1-655 residue fragment are in agreement with the molecular dynamics results and also suggest that the rest of the protein is needed to keep the entire domain properly folded.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Alelos , Substituição de Aminoácidos , Predisposição Genética para Doença , Humanos , Ligação Proteica , Relação Estrutura-Atividade
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1412-1421, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302248

RESUMO

Yeast phosphatidylinositol transfer protein (PITP) Pdr17 is an essential component of the complex required for decarboxylation of phosphatidylserine (PS) to phosphatidylethanolamine (PE) at a non-mitochondrial location. According to current understanding, this process involves the transfer of PS from the endoplasmic reticulum to the Golgi/endosomes. We generated a Pdr17E237A, K269A mutant protein to better understand the mechanism by which Pdr17p participates in the processes connected to the decarboxylation of PS to PE. We show that the Pdr17E237A, K269A mutant protein is not capable of binding phosphatidylinositol (PI) using permeabilized human cells, but still retains the ability to transfer PI between two membrane compartments in vitro. We provide data together with molecular models showing that the mutations E237A and K269A changed only the lipid binding cavity of Pdr17p and not its surface properties. In contrast to Pdr16p, a close homologue, the ability of Pdr17p to bind PI is not required for its major cellular function in the inter-membrane transfer of PS. We hypothesize that these two closely related yeast PITPs, Pdr16p and Pdr17p, have evolved from a common ancestor. Pdr16p fulfills those role(s) in which the ability to bind and transfer PI is required, while Pdr17p appears to have adapted to a different role which does not require the high affinity binding of PI, although the protein retains the capacity to transfer PI. Our results indicate that PITPs function in complex ways in vivo and underscore the need to consider multiple PITP parameters when studying these proteins in vitro.


Assuntos
Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Mutação Puntual , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Esteróis/metabolismo
11.
J Biol Chem ; 293(22): 8600-8613, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669808

RESUMO

The plasminogen system is essential for dissolution of fibrin clots, and in addition, it is involved in a wide variety of other physiological processes, including proteolytic activation of growth factors, cell migration, and removal of protein aggregates. On the other hand, uncontrolled plasminogen activation contributes to many pathological processes (e.g. tumor cells' invasion in cancer progression). Moreover, some virulent bacterial species (e.g. Streptococci or Borrelia) bind human plasminogen and hijack the host's plasminogen system to penetrate tissue barriers. Thus, the conversion of plasminogen to the active serine protease plasmin must be tightly regulated. Here, we show that human lactoferrin, an iron-binding milk glycoprotein, blocks plasminogen activation on the cell surface by direct binding to human plasminogen. We mapped the mutual binding sites to the N-terminal region of lactoferrin, encompassed also in the bioactive peptide lactoferricin, and kringle 5 of plasminogen. Finally, lactoferrin blocked tumor cell invasion in vitro and also plasminogen activation driven by Borrelia Our results explain many diverse biological properties of lactoferrin and also suggest that lactoferrin may be useful as a potential tool for therapeutic interventions to prevent both invasive malignant cells and virulent bacteria from penetrating host tissues.


Assuntos
Borrelia/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Lactoferrina/metabolismo , Plasminogênio/antagonistas & inibidores , Streptococcus/metabolismo , Movimento Celular , Células Cultivadas , Cristalografia por Raios X , Humanos , Lactoferrina/química , Lactoferrina/genética , Plasminogênio/metabolismo , Conformação Proteica
12.
Sci Rep ; 7(1): 631, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28377575

RESUMO

Mitochondrial nucleoids consist of several different groups of proteins, many of which are involved in essential cellular processes such as the replication, repair and transcription of the mitochondrial genome. The eukaryotic, ATP-dependent protease Lon is found within the central nucleoid region, though little is presently known about its role there. Aside from its association with mitochondrial nucleoids, human Lon also specifically interacts with RNA. Recently, Lon was shown to regulate TFAM, the most abundant mtDNA structural factor in human mitochondria. To determine whether Lon also regulates other mitochondrial nucleoid- or ribosome-associated proteins, we examined the in vitro digestion profiles of the Saccharomyces cerevisiae TFAM functional homologue Abf2, the yeast mtDNA maintenance protein Mgm101, and two human mitochondrial proteins, Twinkle helicase and the large ribosomal subunit protein MrpL32. Degradation of Mgm101 was also verified in vivo in yeast mitochondria. These experiments revealed that all four proteins are actively degraded by Lon, but that three of them are protected from it when bound to a nucleic acid; the Twinkle helicase is not. Such a regulatory mechanism might facilitate dynamic changes to the mitochondrial nucleoid, which are crucial for conducting mitochondrial functions and maintaining mitochondrial homeostasis.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Protease La/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Humanos , Ligação Proteica , Transporte Proteico , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
13.
Sci Rep ; 6: 33631, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27632940

RESUMO

Lon is an essential, multitasking AAA(+) protease regulating many cellular processes in species across all kingdoms of life. Altered expression levels of the human mitochondrial Lon protease (hLon) are linked to serious diseases including myopathies, paraplegia, and cancer. Here, we present the first 3D structure of full-length hLon using cryo-electron microscopy. hLon has a unique three-dimensional structure, in which the proteolytic and ATP-binding domains (AP-domain) form a hexameric chamber, while the N-terminal domain is arranged as a trimer of dimers. These two domains are linked by a narrow trimeric channel composed likely of coiled-coil helices. In the presence of AMP-PNP, the AP-domain has a closed-ring conformation and its N-terminal entry gate appears closed, but in ADP binding, it switches to a lock-washer conformation and its N-terminal gate opens, which is accompanied by a rearrangement of the N-terminal domain. We have also found that both the enzymatic activities and the 3D structure of a hLon mutant lacking the first 156 amino acids are severely disturbed, showing that hLon's N-terminal domains are crucial for the overall structure of the hLon, maintaining a conformation allowing its proper functioning.


Assuntos
Mitocôndrias/enzimologia , Protease La/química , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Bacillus subtilis/enzimologia , Humanos , Processamento de Imagem Assistida por Computador , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Protease La/ultraestrutura , Domínios Proteicos , Proteólise
14.
Dev Cell ; 36(6): 639-53, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26972603

RESUMO

In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transcrição Gênica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/genética , Padronização Corporal/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra
15.
Nucleic Acids Res ; 44(5): 2227-39, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26743001

RESUMO

To study the mechanisms involved in the maintenance of a linear mitochondrial genome we investigated the biochemical properties of the recombination protein Mgm101 from Candida parapsilosis. We show that CpMgm101 complements defects associated with the Saccharomyces cerevisiae mgm101-1(ts) mutation and that it is present in both the nucleus and mitochondrial nucleoids of C. parapsilosis. Unlike its S. cerevisiae counterpart, CpMgm101 is associated with the entire nucleoid population and is able to bind to a broad range of DNA substrates in a non-sequence specific manner. CpMgm101 is also able to catalyze strand annealing and D-loop formation. CpMgm101 forms a roughly C-shaped trimer in solution according to SAXS. Electron microscopy of a complex of CpMgm101 with a model mitochondrial telomere revealed homogeneous, ring-shaped structures at the telomeric single-stranded overhangs. The DNA-binding properties of CpMgm101, together with its DNA recombination properties, suggest that it can play a number of possible roles in the replication of the mitochondrial genome and the maintenance of its telomeres.


Assuntos
Candida/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/química , Candida/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clonagem Molecular , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Teste de Complementação Genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Homeostase do Telômero
16.
Virus Res ; 210: 178-87, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26277776

RESUMO

Phage BFK20 replication protein gp43 comprises an N-terminal prim-pol domain and a C-terminal domain similar to replicative helicases. We prepared and studied two recombinant proteins: gp43-1 containing both prim-pol and helicase domains, and gp43C with the helicase domain only. A SEC-MALS analysis indicated that gp43-1 forms a hexameric homooligomer. NTPase activity testing revealed that gp43-1 was able to hydrolyze a wide spectrum of NTPs, ATP the most efficiently. The ATPase activity of gp43-1 was strongly dependent on the presence of ssDNA in the reaction, but was low in the presence of dsDNA and in the absence of DNA. On the other hand, the ATPase activity of gp43C was very low regardless of the presence of DNA. The helicase activity of gp43-1 was detected using a fluorescence-based assay with a forked DNA substrate in the presence of ATP. However, no helicase activity could be detected for gp43C. We therefore conclude that the prim-pol domain is essential for the helicase and ssDNA-dependent ATPase activity of gp43-1.


Assuntos
Bacteriófagos/enzimologia , Bacteriófagos/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Transativadores/genética , Transativadores/metabolismo , Brevibacterium flavum/virologia , DNA Primase/genética , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Nucleosídeo-Trifosfatase/genética , Nucleosídeo-Trifosfatase/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína
17.
Biochim Biophys Acta ; 1842(10): 1483-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066473

RESUMO

Pdr16p is considered a factor of clinical azole resistance in fungal pathogens. The most distinct phenotype of yeast cells lacking Pdr16p is their increased susceptibility to azole and morpholine antifungals. Pdr16p (also known as Sfh3p) of Saccharomyces cerevisiae belongs to the Sec14 family of phosphatidylinositol transfer proteins. It facilitates transfer of phosphatidylinositol (PI) between membrane compartments in in vitro systems. We generated Pdr16p(E235A, K267A) mutant defective in PI binding. This PI binding deficient mutant is not able to fulfill the role of Pdr16p in protection against azole and morpholine antifungals, providing evidence that PI binding is critical for Pdr16 function in modulation of sterol metabolism in response to these two types of antifungal drugs. A novel feature of Pdr16p, and especially of Pdr16p(E235A, K267A) mutant, to bind sterol molecules, is observed.

18.
PLoS Biol ; 12(7): e1001907, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25026549

RESUMO

A relatively small number of signals are responsible for the variety and pattern of cell types generated in developing embryos. In part this is achieved by exploiting differences in the concentration or duration of signaling to increase cellular diversity. In addition, however, changes in cellular competence-temporal shifts in the response of cells to a signal-contribute to the array of cell types generated. Here we investigate how these two mechanisms are combined in the vertebrate neural tube to increase the range of cell types and deliver spatial control over their location. We provide evidence that FGF signaling emanating from the posterior of the embryo controls a change in competence of neural progenitors to Shh and BMP, the two morphogens that are responsible for patterning the ventral and dorsal regions of the neural tube, respectively. Newly generated neural progenitors are exposed to FGF signaling, and this maintains the expression of the Nk1-class transcription factor Nkx1.2. Ventrally, this acts in combination with the Shh-induced transcription factor FoxA2 to specify floor plate cells and dorsally in combination with BMP signaling to induce neural crest cells. As development progresses, the intersection of FGF with BMP and Shh signals is interrupted by axis elongation, resulting in the loss of Nkx1.2 expression and allowing the induction of ventral and dorsal interneuron progenitors by Shh and BMP signaling to supervene. Hence a similar mechanism increases cell type diversity at both dorsal and ventral poles of the neural tube. Together these data reveal that tissue morphogenesis produces changes in the coincidence of signals acting along orthogonal axes of the neural tube and this is used to define spatial and temporal transitions in the competence of cells to interpret morphogen signaling.


Assuntos
Desenvolvimento Embrionário/fisiologia , Tubo Neural/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Proteínas Hedgehog/fisiologia , Camundongos , Tubo Neural/embriologia , Proteínas Nucleares/biossíntese , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/biossíntese
19.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 943-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699640

RESUMO

The S-adenosyl-L-methionine (SAM)-dependent methyltransferase CcbJ from Streptomyces caelestis catalyzes one of the final steps in the biosynthesis of the antibiotic celesticetin, methylation of the N atom of its proline moiety, which greatly enhances the activity of the antibiotic. Since several celesticetin variants exist, this enzyme may be able to act on a variety of substrates. The structures of CcbJ determined by MAD phasing at 3.0 Šresolution, its native form at 2.7 Šresolution and its complex with S-adenosyl-L-homocysteine (SAH) at 2.9 Šresolution are reported here. Based on these structures, three point mutants, Y9F, Y17F and F117G, were prepared in order to study its behaviour as well as docking simulations of both CcbJ-SAM-substrate and CcbJ-SAH-product complexes. The structures show that CcbJ is a class I SAM-dependent methyltransferase with a wide active site, thereby suggesting that it may accommodate a number of different substrates. The mutation results show that the Y9F and F117G mutants are almost non-functional, while the Y17F mutant has almost half of the wild-type activity. In combination with the docking studies, these results suggest that Tyr9 and Phe117 are likely to help to position the substrate for the methyl-transfer reaction and that Tyr9 may also facilitate the reaction by removing an H(+) ion. Tyr17, on the other hand, seems to operate by helping to stabilize the SAM cofactor.


Assuntos
Metiltransferases/química , Streptomyces/enzimologia , Metiltransferases/genética , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína
20.
FEBS J ; 281(7): 1784-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24520911

RESUMO

UNLABELLED: Lon, also called protease La, is an ATP-dependent protease present in all kingdoms of life. It is involved in protein quality control and several regulatory processes. Eukaryotic Lon possesses three domains, an N-terminal domain, an ATPase domain and a proteolytic domain. It requires ATP hydrolysis to digest larger, intact proteins, but can cleave small, fluorogenic peptides such as Glu-Ala-Ala-Phe-MNA by only binding, but not hydrolyzing, ATP. Both ATPase and peptidase activities can be stimulated by the binding of a larger protein substrate, such as ß-casein. To better understand its mechanism of action, we have prepared several point mutants of four conserved residues of human Lon (G893A, G893P, G894A, G894P, G894S, G893A-G894A, G893P-G894A, G893A-G894P, T880V, W770A, W770P) and studied their ATPase, protease and peptidase activities. Our results show that mutations to Gly894 enhance its basal ATPase activity but do not change its ß-casein-stimulated activity. The loop containing Gly893 and Gly894, which flanks Lon's proteolytic active site, therefore appears to be involved in the conformational change that occurs upon substrate binding. Furthermore, mutations to Trp770 have the same general effects on the ATPase activity as mutations to Gly893, indicating that Trp770 is involved in ATPase stimulation. We have also established that this loop does not need to move in order to cleave small, fluorogenic peptides, but does move during the digestion of ß-casein. Finally, we also noted that Lon's ability to digest small peptides can be inhibited by moderate ATP concentrations. DATABASE: Lon (Endopeptidase La), EC 4.4.21.53 STRUCTURED DIGITAL ABSTRACT: • hLonP cleaves beta casein by protease assay (1, 2, 3, 4, 5, 6) • hLon and hLon bind by cross-linking study (View interaction).


Assuntos
Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Mutação , Protease La/metabolismo , Sequência de Aminoácidos , Caseínas/metabolismo , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Protease La/química , Protease La/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...