Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 474(2): 205-215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34893937

RESUMO

High physical activity is important to optimize the function of adipose tissue. Dysfunctional adipose tissue contributes to the development of metabolic stress, chronic inflammation, and hypertension. To improve our current understanding of the interaction between physical exercise and adipose tissue, we analyzed the effect of 10 months voluntary running wheel activity of rats on uncoupling protein (UCP) 1 negative white adipose tissue (visceral and subcutaneous adipose tissue, VWAT and SWAT). Analysis was performed via RT-PCR and immunoblot from adipose tissues depicted from adult normotensive and spontaneously hypertensive female rats. UCP1 negative VWAT differed from UCP1 positive WAT and brown adipose tissue (BAT) from interscapular fat depots, by lacking the expression of UCP1 and low expression of Cidea, a transcriptional co-activator of UCP1. High physical activity affected the expression of five genes in SWAT (Visfatin (up), RBP5, adiponectin, Cidea, and Nrg4 (all down)) but only one gene (Visfatin, up) in VWAT. Furthermore, the expression of these genes is differentially regulated in VWAT and SWAT of normotensive and spontaneously hypertensive rats (SHR) under sedentary conditions (UCP2) and exercise (Visfatin, Cidea, Nrg4). Keeping the animals after 6 months of voluntary exercise under observation for an additional period of 4 months without running wheels, Visfatin, Cidea, and Nrg4 were stronger expressed in VWAT of SHRs than in sedentary control rats. In summary, our study shows that SWAT is more responsible to exercise than VWAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Biomarcadores/metabolismo , Animais , Feminino , Masculino , Condicionamento Físico Animal/métodos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Gordura Subcutânea/metabolismo , Proteína Desacopladora 1/metabolismo
2.
Cardiovasc Res ; 115(7): 1217-1227, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30850841

RESUMO

AIMS: The role of uncoupling protein 2 (UCP2) in cardiac adaptation to pressure overload remains unclear. In a classical model of left ventricular pressure overload genetic deletion of UCP2 (UCP2-/-) protected against cardiac hypertrophy and failure. However, in UCP2-/- mice increased proliferation of pulmonary arterial smooth muscle cells induces mild pulmonary hypertension, right ventricular (RV) hypertrophy, and reduced cardiac output. This suggests a different role for UCP2 in RV and left ventricular adaptation to pressure overload. To clarify this situation in more detail UCP2-/- and wild-type mice were exposed to pulmonary arterial banding (PAB). METHODS AND RESULTS: Mice were analysed (haemodynamics, morphometry, and echocardiography) 3 weeks after PAB or sham surgery. Myocytes and non-myocytes were isolated and analysed separately. Cell shortening of myocytes and fura-2 loading of cardiomyocytes were used to characterize their function. Brd assay was performed to study fibroblast proliferation. Isolated mitochondria were analysed to investigate the role of UCP2 for reactive oxygen species (ROS) production. UCP2 mRNA was 2.7-fold stronger expressed in RV myocytes than in left ventricular myocytes and stronger expressed in non-myocytes compared with myocytes. Three weeks after PAB, cardiac output was reduced in wild type but preserved in UCP2-/- mice. UCP2-/- had increased RV wall thickness, but lower RV internal diameters and displayed a significant stronger fibrosis. Cardiac fibroblasts from UCP2-/- had reduced proliferation rates but higher collagen-1 expression. Myocytes isolated from mice after PAB banding showed preserved function that was further improved by UCP2-/-. Mitochondrial ROS production and respiration was similar between UCP2-/- or wild-type hearts. CONCLUSION: Despite a mild pulmonary hypertension in UCP2-/- mice, hearts from these mice are well preserved against additional pressure overload (severe pulmonary hypertension). This-at least in part-depends on different behaviour of non-myocytes (fibroblasts).


Assuntos
Fibroblastos/metabolismo , Inativação Gênica , Insuficiência Cardíaca/prevenção & controle , Hipertensão Pulmonar/prevenção & controle , Miócitos Cardíacos/metabolismo , Proteína Desacopladora 2/deficiência , Função Ventricular Direita , Remodelação Ventricular , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/genética , Função Ventricular Esquerda
3.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R607-17, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440715

RESUMO

In lung epithelial cells, hypoxia decreases the expression and activity of sodium-transporting molecules, thereby reducing the rate of transepithelial sodium absorption. The mechanisms underlying the sensing of hypoxia and subsequent coupling to sodium-transporting molecules remain unclear. Hydrogen sulfide (H2S) has recently been recognized as a cellular signaling molecule whose intracellular concentrations critically depend on oxygen levels. Therefore, it was questioned whether endogenously produced H2S contributes to hypoxic inhibition of sodium transport. In electrophysiological Ussing chamber experiments, hypoxia was established by decreasing oxygen concentrations in the chambers. Hypoxia concentration dependently and reversibly decreased amiloride-sensitive sodium absorption by cultured H441 monolayers and freshly dissected porcine tracheal epithelia due to inhibition of basolateral Na(+)/K(+)-ATPase. Exogenous application of H2S by the sulfur salt Na2S mimicked the effect of hypoxia and inhibited amiloride-sensitive sodium absorption by both tissues in an oxygen-dependent manner. Hypoxia increased intracellular concentrations of H2S and decreased the concentration of polysulfides. Pretreatment with the cystathionine-γ-lyase inhibitor d/l-propargylglycine (PAG) decreased hypoxic inhibition of sodium transport by H441 monolayers, whereas inhibition of cystathionine-ß-synthase (with aminooxy-acetic acid; AOAA) or 3-mercaptopyruvate sulfurtransferase (with aspartate) had no effect. Inhibition of all of these H2S-generating enzymes with a combination of AOAA, PAG, and aspartate decreased the hypoxic inhibition of sodium transport by H441 cells and pig tracheae and decreased H2S production by tracheae. These data suggest that airway epithelial cells endogenously produce H2S during hypoxia, and this contributes to hypoxic inhibition of transepithelial sodium absorption.


Assuntos
Hipóxia Celular/fisiologia , Sulfeto de Hidrogênio/metabolismo , Oxigênio/metabolismo , Mucosa Respiratória/metabolismo , Absorção pelo Trato Respiratório/fisiologia , Sódio/metabolismo , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...