Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 118(1): 47, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930434

RESUMO

Barth Syndrome (BTHS) is an inherited cardiomyopathy caused by defects in the mitochondrial transacylase TAFAZZIN (Taz), required for the synthesis of the phospholipid cardiolipin. BTHS is characterized by heart failure, increased propensity for arrhythmias and a blunted inotropic reserve. Defects in Ca2+-induced Krebs cycle activation contribute to these functional defects, but despite oxidation of pyridine nucleotides, no oxidative stress developed in the heart. Here, we investigated how retrograde signaling pathways orchestrate metabolic rewiring to compensate for mitochondrial defects. In mice with an inducible knockdown (KD) of TAFAZZIN, and in induced pluripotent stem cell-derived cardiac myocytes, mitochondrial uptake and oxidation of fatty acids was strongly decreased, while glucose uptake was increased. Unbiased transcriptomic analyses revealed that the activation of the eIF2α/ATF4 axis of the integrated stress response upregulates one-carbon metabolism, which diverts glycolytic intermediates towards the biosynthesis of serine and fuels the biosynthesis of glutathione. In addition, strong upregulation of the glutamate/cystine antiporter xCT increases cardiac cystine import required for glutathione synthesis. Increased glutamate uptake facilitates anaplerotic replenishment of the Krebs cycle, sustaining energy production and antioxidative pathways. These data indicate that ATF4-driven rewiring of metabolism compensates for defects in mitochondrial uptake of fatty acids to sustain energy production and antioxidation.


Assuntos
Síndrome de Barth , Animais , Camundongos , Síndrome de Barth/genética , Cistina , Antioxidantes , Ácidos Graxos , Glutamatos , Glutationa
2.
Circulation ; 144(21): 1694-1713, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34648376

RESUMO

BACKGROUND: Barth syndrome (BTHS) is caused by mutations of the gene encoding tafazzin, which catalyzes maturation of mitochondrial cardiolipin and often manifests with systolic dysfunction during early infancy. Beyond the first months of life, BTHS cardiomyopathy typically transitions to a phenotype of diastolic dysfunction with preserved ejection fraction, blunted contractile reserve during exercise, and arrhythmic vulnerability. Previous studies traced BTHS cardiomyopathy to mitochondrial formation of reactive oxygen species (ROS). Because mitochondrial function and ROS formation are regulated by excitation-contraction coupling, integrated analysis of mechano-energetic coupling is required to delineate the pathomechanisms of BTHS cardiomyopathy. METHODS: We analyzed cardiac function and structure in a mouse model with global knockdown of tafazzin (Taz-KD) compared with wild-type littermates. Respiratory chain assembly and function, ROS emission, and Ca2+ uptake were determined in isolated mitochondria. Excitation-contraction coupling was integrated with mitochondrial redox state, ROS, and Ca2+ uptake in isolated, unloaded or preloaded cardiac myocytes, and cardiac hemodynamics analyzed in vivo. RESULTS: Taz-KD mice develop heart failure with preserved ejection fraction (>50%) and age-dependent progression of diastolic dysfunction in the absence of fibrosis. Increased myofilament Ca2+ affinity and slowed cross-bridge cycling caused diastolic dysfunction, in part, compensated by accelerated diastolic Ca2+ decay through preactivated sarcoplasmic reticulum Ca2+-ATPase. Taz deficiency provoked heart-specific loss of mitochondrial Ca2+ uniporter protein that prevented Ca2+-induced activation of the Krebs cycle during ß-adrenergic stimulation, oxidizing pyridine nucleotides and triggering arrhythmias in cardiac myocytes. In vivo, Taz-KD mice displayed prolonged QRS duration as a substrate for arrhythmias, and a lack of inotropic response to ß-adrenergic stimulation. Cellular arrhythmias and QRS prolongation, but not the defective inotropic reserve, were restored by inhibiting Ca2+ export through the mitochondrial Na+/Ca2+ exchanger. All alterations occurred in the absence of excess mitochondrial ROS in vitro or in vivo. CONCLUSIONS: Downregulation of mitochondrial Ca2+ uniporter, increased myofilament Ca2+ affinity, and preactivated sarcoplasmic reticulum Ca2+-ATPase provoke mechano-energetic uncoupling that explains diastolic dysfunction and the lack of inotropic reserve in BTHS cardiomyopathy. Furthermore, defective mitochondrial Ca2+ uptake provides a trigger and a substrate for ventricular arrhythmias. These insights can guide the ongoing search for a cure of this orphaned disease.


Assuntos
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Síndrome de Barth/complicações , Síndrome de Barth/genética , Canais de Cálcio/deficiência , Contração Miocárdica/genética , Trifosfato de Adenosina/biossíntese , Animais , Síndrome de Barth/metabolismo , Biomarcadores , Encéfalo/metabolismo , Cálcio/metabolismo , Diástole , Modelos Animais de Doenças , Suscetibilidade a Doenças , Acoplamento Excitação-Contração/genética , Testes de Função Cardíaca , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , NADP/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Volume Sistólico , Sístole
3.
Antioxid Redox Signal ; 35(3): 163-181, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33121253

RESUMO

Significance: Cardiovascular stem cells are important for regeneration and repair of damaged tissue. Recent Advances: Pluripotent stem cells have a unique metabolism, which is adopted for their energetic and biosynthetic demand as rapidly proliferating cells. Stem cell differentiation requires an exceptional metabolic flexibility allowing for metabolic remodeling between glycolysis and oxidative phosphorylation. Critical Issues: Respiration is associated with the generation of reactive oxygen species (ROS) by the mitochondrial respiratory chain. But also the membrane-bound protein nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, NOX) contributes to ROS levels. ROS not only play a significant role in stem cell differentiation and tissue renewal but also cause senescence and contribute to tissue aging. Future Directions: For utilization of stem cells in therapeutic approaches, a deep understanding of the molecular mechanisms how metabolism and the cellular redox state regulate stem cell differentiation is required. Modulating the redox state of stem cells using antioxidative agents may be suitable to enhance activity of endothelial progenitor cells. Antioxid. Redox Signal. 35, 163-181.


Assuntos
Suscetibilidade a Doenças , Metabolismo Energético , Homeostase , Mioblastos Cardíacos/metabolismo , Oxirredução , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Senescência Celular , Humanos , Mioblastos Cardíacos/citologia , Estresse Oxidativo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células-Tronco/citologia
4.
Biochim Biophys Acta Mol Basis Dis ; 1866(8): 165803, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348916

RESUMO

Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).


Assuntos
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatia Dilatada/metabolismo , Catarata/metabolismo , Ataxia Cerebelar/metabolismo , Erros Inatos do Metabolismo/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Síndrome de Barth/genética , Síndrome de Barth/patologia , Transporte Biológico , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Catarata/genética , Catarata/patologia , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Transporte de Elétrons/genética , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitofagia/genética , Miocárdio/metabolismo , Miocárdio/patologia , Ácidos Fosfatídicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...