Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 248: 118317, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301761

RESUMO

The Third Pole (TP) is a high mountain region in the world, and is well-known for its pristine environment, but recent development activities in the region have degraded its air quality. Here, we investigate the spatial and temporal changes of the air pollutants ammonia (NH3), sulphur dioxide (SO2) and carbon monoxide (CO) in TP, and reveal their sources using satellite measurements and emission inventory. We observe a clear seasonal cycle of NH3 in TP, with high values in summer and low values in winter. The intense agriculture activities in the southern TP are the cause of high NH3 (6-8 × 1016 molec./cm2) there. Similarly, CO shows a distinct seasonal cycle with high values in spring in the southeast TP due to biomass burning. In addition, the eastern boundary of TP in the Sichuan and Qinghai provinces also show high values of CO (about 1.5 × 1018 mol/cm2), primarily owing to the industrial activities. There is no seasonal cycle found for SO2 distribution in TP, but relatively high values (8-10 mg/m2) are observed in its eastern boundary. The high-altitude pristine regions of inner TP are also getting polluted because of increased human activities in and around TP, as we estimate positive trends in CO (0.5-1.5 × 1016 mol/cm2/yr) there. In addition, positive trends are also found in NH3 (0.025 × 1016 molec./cm2/yr) during 2008-2020 in most regions of TP and SO2 (about 0.25-0.75 mg/m2/yr) in the Sichuan and Qinghai region during 2000-2020. As revealed by the emission inventory, there are high anthropogenic emissions of NH3, SO2 and CO within TP. There are emissions of pollutants from energy sectors, oil and refinery, agriculture waste burning and manure management within TP. These anthropogenic activities accelerate the ongoing development in TP, but severely erode its environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estações do Ano , Dióxido de Enxofre
2.
Mar Pollut Bull ; 197: 115783, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988881

RESUMO

Indian Ocean has been undergoing rapid warming in recent years, which increases the likelihood of Marine heatwave (MHW). MHWs are extreme warm ocean surface conditions in which temperature exceeds the 95th percentile for three or more consecutive days. We investigate MHW events occurred in Arabian Sea (AS) and Bay of Bengal (BoB) during pre-monsoon for 1982-2021 period, their impact on Chlorophyll-a (Chl-a) and net primary productivity (NPP). There were 42 (68) MHW events with a significant trend of 8.1 (6.3) MHW days dec-1 in AS (BoB). There is a distinct decrease in Chl-a concentration associated with MHW, especially in medium and long duration events. In general, AS and BoB have witnessed more frequent and long-lasting MHWs in the 2002-2021 period, which reduce NPP of north Indian Ocean. A decrease in Chl-a and NPP, 10 % in AS and 2 % in BoB, is estimated, but only severe MHWs inflict a notable reduction.


Assuntos
Clorofila , Clorofila A , Oceano Índico , Estações do Ano , Temperatura
3.
Environ Res ; 238(Pt 1): 117105, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689338

RESUMO

We analyse the long-term (1980-2020) changes in aerosols over the Third Pole (TP) and assess the changes in radiative forcing (RF) using satellite, ground-based and reanalysis data. The annual mean aerosol optical depth (AOD) varies from 0.06 to 0.24, with the highest values of around 0.2 in the north and southwest TP, which are dominated by dust from Taklimakan and Thar deserts, respectively. However, Organic Carbon (OC), Black Carbon (BC) and sulphate aerosols have significant contributions to the total AOD in the south and east TP. High amounts of dust are observed in spring and summer, but BC in winter. Trajectory analysis reveals that the air mass originated from East and South Asia carries BC and OC, whereas the air from South Asia, Central Asia and Middle East brings dust to TP. Significant positive trends in AOD is found in TP, with high values of about 0.002/yr in the eastern and southern TP. There is a gradual increase in BC and OC concentrations during 1980-2020, but the change from 2000 is phenomenal. The RF at the top of the atmosphere varies from -10 to 2 W/m2 in TP, and high positive RF of about 2 W/m2 is estimated in Pamir, Karakoram and Nyainquentanglha mountains, where the massive glacier mass exists. The RF has increased in much of TP during recent decades (2001-2020) with respect to previous decades (1981-2000), which can be due to the rise in BC and dust during the latter period. Therefore, the positive trend in BC and its associated change in RF can amplify the regional warming, and thus, the melting of glaciers or ice in TP. This is a great concern as it is directly connected to the water security of many South Asian countries.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Mudança Climática , Poeira/análise , Estações do Ano , Aerossóis/análise , Carbono/análise , Monitoramento Ambiental/métodos
4.
Environ Pollut ; 335: 122269, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37524239

RESUMO

The COVID-19 lockdown (LD) provided a unique opportunity to examine the changes in regional and global air quality. Changes in the atmospheric carbon monoxide (CO) during LD warrant a thorough analysis as CO is a major air pollutant that affects human health, ecosystem and climate. Our analysis reveals a decrease of 5-10% in the CO column during LD (April-May 2020) compared to the pre-lockdown (PreLD, March 2020) periods in regions with high anthropogenic activity, such as East China (EC), Indo-Gangetic Plain (IGP), North America, parts of Europe and Russia. However, this reduction did not occur in the regions of frequent and intense wildfires and agricultural waste burning (AWB). We find high heterogeneity in the CO column distributions, from regional to city scales during the LD period. To determine the sources of CO emissions during LD, we examined the ratios of nitrogen dioxide (NO2), sulfur dioxide (SO2) to CO for major cities in the world. This facilitated the identification of contributions from different sources; including vehicles, industries and biomass burning during LD. The comparison between CO levels during the LD and PreLD periods indicates a notable reduction in the global tropospheric CO, but no significant change in the stratosphere. It is found that CO emissions decreased during LD in the hotspot regions, but rebounded after the LD restrictions were lifted. This study, therefore, highlights the importance of policy decisions and their implementations in the global and regional scales to improve the air quality, and thus to protect public health and environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Ecossistema , Material Particulado/análise , Monitoramento Ambiental , Controle de Doenças Transmissíveis , Poluição do Ar/análise , Poluentes Atmosféricos/análise
5.
Heliyon ; 9(7): e17940, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483689

RESUMO

Global oceanic regions are rapidly changing in terms of their temperature, oxygen, heat content, salinity and biogeochemistry. Since the biogeochemistry of the oceans is important and pivotal for global food production, and a major part of the world population relies on marine resources for their daily life and livelihood, it is imperative to monitor and find the spatio-temporal changes in the primary productivity of oceans. Here, we estimate the changes in Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP) in the north Indian Ocean (NIO) basins of Bay of Bengal and Arabian Sea for the period 1998-2019. We find a substantial reduction of NPP in NIO since 1998 (-0.048 mg m-3 day-1 yr-1) and the increase in sea surface temperature (SST) (+0.02 °C yr-1) is the primary driver of this change. Furthermore, there is a significant (10-20%) change in the air mass or dust transport to NIO from the period Decade 1 (1998-2008) to Decade 2 (2009-2019). This change in air mass trajectories has also altered NPP in both basins through the changes in nutrient input and associated biogeochemistry. Henceforth, this study cautions the changes in primary productivity of NIO, and suggests regular assessments and continuous monitoring of the physical and biological processes from a perspective of food security and ecosystem dynamics.

6.
Chemosphere ; 336: 139259, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343635

RESUMO

Carbon Monoxide (CO) is not a greenhouse gas (GHG), but has the capacity to change atmospheric chemistry of other GHGs such as methane and ozone, and therefore indirectly affects Earth's radiative forcing of the GHGs and surface temperature. Here, we use the CO mixing ratio at 850 hPa from the Tropospheric Emission Spectrometer (TES) reanalysis and the Measurement of Pollution in the Troposphere (MOPITT) satellite measurements for the period 2005-2019 to examine the spatio-temporal changes in CO across the latitudes. We find a substantial decrease in global CO, about -0.21 ± 0.09 ppb/yr (-0.23 ± 0.12%/yr) with the TES data and about -0.36 ± 0.07 ppb/yr (-0.45 ± 0.08%/yr) with the MOPITT satellite measurements during the study period. The highest CO decreasing trend is observed in Eastern China (-2.7 ± 0.37 ppb/yr) followed by Myanmar (-2.142 ± 0.59 ppb/yr) and South America (-1.08 ± 0.82 ppb/yr). This negative trend in CO is primarily due to the decrease in biomass burning and stringent environmental regulations in the respective regions and countries. The sources including road transport, which account for about 33.6% of CO emissions, followed by industries (18.3%) and agricultural waste burning (8.8%), might also be responsible for the reduction in CO due to the adaptation of improved emission control technology and regulations in the past decades from 2005 to 2019. Therefore, the study provides new insights on the current trends of global CO distribution and reasons for recent reduction in global CO emissions, which would be useful for future decision-making process to control air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Monóxido de Carbono/análise , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Ozônio/análise , Tecnologia
7.
Sci Rep ; 13(1): 4314, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922652

RESUMO

Anthropogenic emissions have produced significant amount of carbon dioxide (CO2) in the atmosphere since the beginning of the industrial revolution. High levels of atmospheric CO2 increases global temperature as CO2 absorbs outgoing longwave radiation and re-emits. Though a well-mixed greenhouse gas, CO2 concentration is not uniform in the atmosphere across different altitudes and latitudes. Here, we uncover a region of high CO2 concentration (i.e. CO2 pool) in the middle troposphere (500-300 hPa) over the Indo-Pacific Warm Pool (IPWP, 40° E-140° W, 25° S-25° N), in which the CO2 concentration is higher than that of other regions in the same latitude band (20° N-20° S), by using CO2 satellite measurements for the period 2002-2017. This CO2 pool extends from the western Pacific to the eastern Indian Ocean. Much of the CO2 pool is over the western Pacific Ocean (74.87%), and the remaining lies over the eastern Indian Ocean (25.13%). The rising branch of Walker circulation acts as a "CO2 Chimney" that constantly transports CO2 released from the natural, human-induced and ocean outgassing processes to the middle and upper troposphere. The CO2 pool evolves throughout the year with an average annual trend of about 2.17 ppm yr-1, as estimated for the period 2003-2016. Our analysis further reveals that La Niña (El Niño) events strengthen (weaken) the CO2 pool in the mid-troposphere. The radiative forcing for the CO2 pool suggests more warming in the region and is a grave concern for global warming and climate change.

8.
J Environ Manage ; 332: 117435, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746044

RESUMO

Arabian Sea (AS) experiences Chlorophyll-a (Chl-a) blooms during winter and early spring (November-March) mainly due to the changes induced by seasonally reversing monsoon winds and associated processes. The seasonal blooms exhibit distinct regional patterns in their onset, duration, intensity and peak period. Recent changes in ocean dynamics and plankton composition have inflicted adverse effects in the distribution of Chl-a concentration in AS. Here, we analyse the long-term spatio-temporal changes in winter and early spring bloom events during the period 1997-2020, and evaluate the role of sea surface temperature (SST), mixed layer depth (MLD), sea surface salinity, winds, mesoscale eddies and surface currents on these bloom occurrences. We observe a significant reduction in these blooms, which started in the early 2000s and intensified in the last decade (2010-2020), with a notable drop in the adjacent gulfs (Gulf of Aden: 1.38 ± 0.7 × 10-5 mg m-3 yr-1, Gulf of Oman: 4.71 ± 1.35 × 10-6 mg m-3 yr-1) and West coast of India (-6.71 ± 2.85 × 10-6 mg m-3 yr-1). The MLD and ocean temperature are the major factors that govern bloom in Gulf of Oman and open waters. Conversely, the coastal upwelling and eddies drive blooms in Gulf of Aden. The winter cooling trigger the bloom in the northern Indian west coast, but the inter-basin exchange of surface waters through the West Indian Coastal Current inhibits its southward spread. This study, therefore, reveals unique processes that initiate and control the winter and early spring blooms in different regions of AS. The ongoing warming of AS could contribute to further decline in these seasonal blooms, which would be a great concern for regional marine productivity and associated regional food security.


Assuntos
Fitoplâncton , Vento , Estações do Ano , Temperatura , Temperatura Baixa
9.
Appl Geogr ; 151: 102869, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36619606

RESUMO

The direct effect of pandemic induced lockdown (LD) on environment is widely explored, but its secondary impacts remain largely unexplored. Therefore, we assess the response of surface greenness and photosynthetic activity to the LD-induced improvement of air quality in India. Our analysis reveals a significant improvement in air quality marked by reduced levels of aerosols (AOD, -19.27%) and Particulate Matter (PM 2.5, -23%) during LD (2020)from pre-LD (March-September months for the period 2017-2019). The vegetation exhibits a positive response, reflected by the increase in surface greenness [Enhanced Vegetation Index (EVI, +10.4%)] and photosynthetic activity [Solar Induced Fluorescence (SiF, +11%)], during LD from pre-LD that coincides with two major agricultural seasons of India; Zaid (March-May) and Kharif (June-September). In addition, the croplands show a higher response [two-fold in EVI (14.45%) and four-fold in SiF (17.7%)] than that of forests. The prolonged growing period (phenology) and high rate of photosynthesis (intensification) led to the enhanced greening during LD owing to the reduced atmospheric pollution. This study, therefore, provides new insights into the response of vegetation to the improved air quality, which would give ideas to counter the challenges of food security in the context of climate pollution, and combat global warming by more greening.

10.
Sci Total Environ ; 838(Pt 1): 155885, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595133

RESUMO

The increase in greenhouse gases (GHGs) due to anthropogenic activities enhances regional and global temperatures. The most abundant GHG, i.e., water vapour, has a vital positive feedback on the global warming and Earth's climate system. This study focuses on the spatial and temporal changes in water vapour in the troposphere over India and Indian Ocean as derived from the ground-based, satellite and reanalyses data, and assesses the impact on water vapour changes on the regional climate by analysing radiative effects. The analyses show that the annual mean column water vapour (CWV) is high over the northern Indian Ocean, Bay of Bengal and Peninsular India, ranging from 30 to 60 kg/m2. Most regions show significant positive trends in the annual mean CWV, about 0.1-0.2 kg/m2/yr. There is a significant positive trend in water vapour in the troposphere (except 200 hPa) over the India land regions, with the highest values at 1000 hPa (0.034 g/kg/yr). The corresponding water vapour radiative effect (WVRE) is about 20-80 W/m2, depending on seasons and regions. This study, therefore, indicates that the increase in tropospheric water vapour over India and Indian Ocean could affect the regional temperature and climate.


Assuntos
Clima , Vapor , Aquecimento Global , Oceano Índico , Estações do Ano
11.
Environ Sci Process Impacts ; 24(3): 447-459, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156666

RESUMO

The discovery of causal structures behind a phenomenon under investigation has been at the heart of scientific inquiry since the beginning. Randomized control trials, the gold standard for causal analysis, may not always be feasible, such as in the domain of climate sciences. In the absence of interventional data, we are forced to depend only on observational data. This study demonstrates the application of one such causal discovery algorithm using a neural network for identifying the drivers of surface ozone variability in Antarctica. The analyses reveal the overarching influence of the stratosphere on the surface ozone variability in Antarctica, buttressed by the southern annular mode and tropospheric wave forcing in mid-latitudes. We find no significant and robust evidence for the influence of tropical teleconnection on the ground-level ozone in Antarctica. As the field of atmospheric science is now replete with a massive stock of observational data, both satellite and ground-based, this tool for automated causal structure discovery might prove to be invaluable for scientific investigation and flawless decision making.


Assuntos
Aprendizado Profundo , Ozônio , Regiões Antárticas , Clima , Ozônio/análise
12.
J Environ Manage ; 289: 112526, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848879

RESUMO

Methane (CH4) is a prominent Greenhouse Gas (GHG) and its global atmospheric concentration has increased significantly since the year 2007. Anthropogenic CH4 emissions are projected to be 9390 million metric tonnes by 2020. Here, we present the long-term changes in atmospheric methane over India and suggest possible alternatives to reduce soil emissions from paddy fields. The increase in atmospheric CH4 concentrations from 2009 to 2020 in India is significant, about 0.0765 ppm/decade. The Indo-Gangetic Plains, Peninsular India and Central India show about 0.075, 0.076 and 0.074 ppm/decade, respectively, in 2009-2020. Seasonal variations in CH4 emissions depend mostly on agricultural activities and meteorology, and contribution during the agricultural intensive period of Kharif-Rabi (i.e., June-December) is substantial in this regard. The primary reason for agricultural soil emissions is the application of chemical fertilizers to improve crop yield. However, for rice farming, soil amendments involving stable forms of carbon can reduce GHG emissions and improve soil carbon status. High crop production in pot culture experiment resulted in lower potential yield-scaled GHG emissions in rice with biochar supplement. The human impact of global warming induced by agricultural activities could be reduced by using biochar as a natural solution.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Fertilizantes/análise , Aquecimento Global , Gases de Efeito Estufa/análise , Humanos , Índia , Metano/análise , Óxido Nitroso/análise , Solo
13.
Sci Total Environ ; 740: 139986, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927535

RESUMO

Atmospheric ammonia (NH3) is an alkaline gas and a prominent constituent of the nitrogen cycle that adversely affects ecosystems at higher concentrations. It is a pollutant, which influences all three spheres such as haze formation in the atmosphere, soil acidification in the lithosphere, and eutrophication in water bodies. Atmospheric NH3 reacts with sulfur (SOx) and nitrogen (NOx) oxides to form aerosols, which eventually affect human health and climate. Here, we present the seasonal and inter-annual variability of atmospheric NH3 over India in 2008-2016 using the IASI (Infrared Atmospheric Sounding Interferometer) satellite observations. We find that Indo-Gangetic Plains (IGP) is one of the largest and rapidly growing NH3 hotspots of the world, with a growth rate of +1.2% yr-1 in summer (June-August: Kharif season), due to intense agricultural activities and presence of many fertilizer industries there. However, our analyses show insignificant decreasing trends in annual NH3 of about -0.8% yr-1 in all India, about -0.4% yr-1 in IGP, and -1.0% yr-1 in the rest of India. Ammonia is positively correlated with total fertilizer consumption (r = 0.75) and temperature (r = 0.5) since high temperature favors volatilization, and is anti-correlated with total precipitation (r = from -0.2, but -0.8 in the Rabi season: October-February) as wet deposition helps removal of atmospheric NH3. This study, henceforth, suggests the need for better fertilization practices and viable strategies to curb emissions, to alleviate the adverse health effects and negative impacts on the ecosystem in the region. On the other hand, the overall decreasing trend in atmospheric NH3 over India shows the positive actions, and commitment to the national missions and action plans to reduce atmospheric pollution and changes in climate.

14.
Sci Rep ; 8(1): 6026, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662104

RESUMO

India is home for more than a billion people and its economy is largely based on agrarian society. Therefore, rainfall received not only decides its livelihood, but also influences its water security and economy. This situation warrants continuous surveillance and analysis of Indian rainfall. These kinds of studies would also help forecasters to better tune their models for accurate weather prediction. Here, we introduce a new method for estimating variability and trends in rainfall over different climate regions of India. The method based on multiple linear regression helps to assess contributions of different remote and local climate forcings to seasonal and regional inhomogeneity in rainfall. We show that the Indian Summer Monsoon Rainfall (ISMR) variability is governed by Eastern and Central Pacific El Niño Southern Oscillation, equatorial zonal winds, Atlantic zonal mode and surface temperatures of the Arabian Sea and Bay of Bengal, and the North East Monsoon Rainfall variability is controlled by the sea surface temperature of the North Atlantic and extratropial oceans. Also, our analyses reveal significant positive trends (0.43 mm/day/dec) in the North West for ISMR in the 1979-2017 period. This study cautions against the significant changes in Indian rainfall in a perspective of global climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...