Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(14): 9376-9400, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37450324

RESUMO

Activating the stimulator of interferon genes (STING) pathway with STING agonists is an attractive immune oncology concept to treat patients with tumors that are refractory to single-agent anti-PD-1 therapy. For best clinical translatability and broad application to cancer patients, STING agonists with potent cellular activation of all STING variants are desired. Novel cyclic dinucleotide (CDN)-based selective STING agonists were designed and synthesized comprising noncanonical nucleobase, ribose, and phosphorothioate moieties. This strategy led to the discovery of 2',3'-CDN 13 (BI 7446), which features unprecedented potency and activates all five STING variants in cellular assays. ADME profiling revealed that CDN 13 has attractive drug-like properties for development as an intratumoral agent. Injection of low doses of CDN 13 into tumors in mice induced long-lasting, tumor-specific immune-mediated tumor rejection. Based on its compelling preclinical profile, BI 7446 has been advanced to clinical trials (monotherapy and in combination with anti-PD-1 antibody).


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/patologia , Imunoterapia
2.
ChemMedChem ; 17(21): e202200419, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198574

RESUMO

The Frontiers in Medicinal Chemistry (FiMC) meeting, which represents the largest international medicinal chemistry conference in Germany, took place from March 14th to 16th 2022 in a fully virtual format. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh) together with the Division of Pharmaceutical & Medicinal Chemistry of the German Pharmaceutical Society (DPhG) and a "local" organization committee from the University of Freiburg headed by Manfred Jung, the meeting brought together 271 participants from around 20 countries. The program included 33 lectures by leading scientists from industry and academia as well as early career investigators. 67 posters were presented in two poster sessions and with over 20.000 poster abstract downloads. The general organization and the time-shift function were very much appreciated as demonstrated by almost 600 on-demand contents retrieved. The online format fitted perfectly to bring together medicinal chemists from academia and industry across the globe.


Assuntos
Química Farmacêutica , Humanos , Alemanha
3.
Org Lett ; 23(11): 4396-4399, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33988373

RESUMO

The addition of carbamoyl anions to azirines affords synthetically useful 2-aziridinyl amide building blocks. The reaction scope was explored with respect to both formamide and azirine, and the addition was found to be highly diastereoselective. A one-pot conversion of a ketoxime to an aziridinyl amide was demonstrated. The method was employed to incorporate an aziridine residue into a dipeptide segment.

4.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1158-L1164, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267720

RESUMO

Shifts in cellular metabolic phenotypes have the potential to cause disease-driving processes in respiratory disease. The respiratory epithelium is particularly susceptible to metabolic shifts in disease, but our understanding of these processes is limited by the incompatibility of the technology required to measure metabolism in real-time with the cell culture platforms used to generate differentiated respiratory epithelial cell types. Thus, to date, our understanding of respiratory epithelial metabolism has been restricted to that of basal epithelial cells in submerged culture, or via indirect end point metabolomics readouts in lung tissue. Here we present a novel methodology using the widely available Seahorse Analyzer platform to monitor real-time changes in the cellular metabolism of fully differentiated primary human airway epithelial cells grown at air-liquid interface (ALI). We show increased glycolytic, but not mitochondrial, ATP production rates in response to physiologically relevant increases in glucose availability. We also show that pharmacological inhibition of lactate dehydrogenase is able to reduce glucose-induced shifts toward aerobic glycolysis. This method is timely given the recent advances in our understanding of new respiratory epithelial subtypes that can only be observed in vitro through culture at ALI and will open new avenues to measure real-time metabolic changes in healthy and diseased respiratory epithelium, and in turn the potential for the development of novel therapeutics targeting metabolic-driven disease phenotypes.


Assuntos
Ar , Diferenciação Celular , Sistemas Computacionais , Metabolismo Energético , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Nariz/citologia , Ácidos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Glucose/farmacologia , Humanos , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Metabolômica
5.
Respir Res ; 20(1): 87, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072408

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by aberrant fibroblast activation and progressive fibrotic remodelling of the lungs. Though the exact pathophysiological mechanisms of IPF remain unknown, TGF-ß1 is thought to act as a main driver of the disease by mediating fibroblast-to-myofibroblast transformation (FMT). Recent reports have indicated that a metabolic shift towards aerobic glycolysis takes place during FMT and that metabolic shifts can directly influence aberrant cell function. This has led to the hypothesis that inhibition of lactate dehydrogenase 5 (LDH5), an enzyme responsible for converting pyruvate into lactate, could constitute a therapeutic concept for IPF. METHODS: In this study, we investigated the potential link between aerobic glycolysis and FMT using a potent LDH5 inhibitor (Compound 408, Genentech). Seahorse analysis was performed to determine the effect of Compound 408 on TGF-ß1-driven glycolysis in WI-38 fibroblasts. TGF-ß1-mediated FMT was measured by quantifying α-smooth muscle actin (α-SMA) and fibronectin in primary human lung fibroblasts following treatment with Compound 408. Lactate and pyruvate levels in the cell culture supernatant were assessed by LC-MS/MS. In addition to pharmacological LDH5 inhibition, the effect of siRNA-mediated knockdown of LDHA and LDHB on FMT was examined. RESULTS: We show that treatment of lung fibroblasts with Compound 408 efficiently inhibits LDH5 and attenuates the TGF-ß1-mediated metabolic shift towards aerobic glycolysis. Additionally, we demonstrate that LDH5 inhibition has no significant effect on TGF-ß1-mediated FMT in primary human lung fibroblasts by analysing α-SMA fibre formation and fibronectin expression. CONCLUSIONS: Our data strongly suggest that while LDH5 inhibition can prevent metabolic shifts in fibroblasts, it has no influence on FMT and therefore glycolytic dysregulation is unlikely to be the sole driver of FMT.


Assuntos
Fibroblastos/metabolismo , Glicólise/fisiologia , Lactato Desidrogenase 5/antagonistas & inibidores , Lactato Desidrogenase 5/metabolismo , Miofibroblastos/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Miofibroblastos/efeitos dos fármacos
6.
ChemMedChem ; 13(10): 983-987, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29534329

RESUMO

Late-stage functionalization (LSF) is a powerful method to quickly generate new analogues of a lead structure without resorting to de novo synthesis. We have leveraged Baran Diversinates to carry out late-stage functionalizations on lead structures from internal drug discovery projects and accurately predicted regioselectivities using computational methods. Our functionalization successfully afforded specific regioisomers which were in line with our predictions. To enhance reactivity, decrease reaction time, and increase reaction yields, we have developed new functionalization conditions involving iron(III) catalysis. Finally, we demonstrate how our LSF reactions using Baran Diversinates can lead to new analogues with improved in vitro DMPK parameters.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas/síntese química , Simulação por Computador , Modelos Químicos , Estrutura Molecular , Preparações Farmacêuticas/química , Relação Estrutura-Atividade
7.
Br J Pharmacol ; 175(4): 693-707, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197066

RESUMO

BACKGROUND AND PURPOSE: Autotaxin (ATX) is a secreted phospholipase which hydrolyses lysophosphatidylcholine to generate lysophosphatidic acid (LPA). The extracellular signalling molecule LPA exerts its biological actions through activation of six GPCRs expressed in various cell types including fibroblasts. Multiple preclinical studies using knockout animals, LPA receptor antagonists or ATX inhibitors have provided evidence for a potential role of the ATX/LPA axis in tissue fibrosis. Despite growing evidence for a correlation between ATX levels and the degree of fibrosis in chronic liver diseases, including viral hepatitis and hepatocellular carcinoma, the role of ATX in non-alcoholic steatohepatitis (NASH) remains unclear. EXPERIMENTAL APPROACH: The relevance of ATX in the pathogenesis of liver fibrosis was investigated by oral administration of Ex_31, a selective ATX inhibitor, in a 10 week model of carbon tetrachloride-induced liver injury and in a 14 week model of choline-deficient amino acid-defined diet-induced liver injury in rats. KEY RESULTS: Oral administration of Ex_31, a selective ATX inhibitor, at 15 mg·kg-1 twice daily in therapeutic intervention mode resulted in efficient ATX inhibition and more than 95% reduction in plasma LPA levels in both studies. Treatment with Ex_31 had no effect on biomarkers of liver function, inflammation, or fibrosis and did not result in histological improvements in diseased animals. CONCLUSIONS AND IMPLICATIONS: Our findings question the role of ATX in the pathogenesis of hepatic fibrosis and the potential of small molecule ATX inhibitors for the treatment of patients with NASH and advanced stages of liver fibrosis.


Assuntos
Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Tetracloreto de Carbono/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Lisofosfolipídeos/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
ACS Med Chem Lett ; 8(12): 1252-1257, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29259743

RESUMO

In an effort to find new therapeutic interventions addressing the unmet medical need of patients with idiopathic pulmonary fibrosis, we initiated a program to identify new autotaxin (ATX) inhibitors. Starting from a recently published compound (PF-8380), we identified several highly potent ATX inhibitors with improved pharmacokinetic and safety profiles. Further optimization efforts resulted in the identification of a single-digit nanomolar lead compound (BI-2545) that shows substantial lowering of LPA in vivo and is therefore considered a valuable tool for further studies.

9.
ACS Cent Sci ; 3(12): 1276-1285, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29296668

RESUMO

The diterpenoid ester ingenol mebutate (IngMeb) is the active ingredient in the topical drug Picato, a first-in-class treatment for the precancerous skin condition actinic keratosis. IngMeb is proposed to exert its therapeutic effects through a dual mode of action involving (i) induction of cell death that is associated with mitochondrial dysfunction followed by (ii) stimulation of a local inflammatory response, at least partially driven by protein kinase C (PKC) activation. Although this therapeutic model has been well characterized, the complete set of molecular targets responsible for mediating IngMeb activity remains ill-defined. Here, we have synthesized a photoreactive, clickable analogue of IngMeb and used this probe in quantitative proteomic experiments to map several protein targets of IngMeb in human cancer cell lines and primary human keratinocytes. Prominent among these targets was the mitochondrial carnitine-acylcarnitine translocase SLC25A20, which we show is inhibited in cells by IngMeb and the more stable analogue ingenol disoxate (IngDsx), but not by the canonical PKC agonist 12-O-tetradecanoylphorbol-13-acetate (TPA). SLC25A20 blockade by IngMeb and IngDsx leads to a buildup of cellular acylcarnitines and blockade of fatty acid oxidation (FAO), pointing to a possible mechanism for IngMeb-mediated perturbations in mitochondrial function.

11.
Angew Chem Int Ed Engl ; 54(47): 14044-8, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26418078

RESUMO

Ingenol derivatives with varying degrees of oxidation were prepared by two-phase terpene synthesis. This strategy has allowed access to analogues that cannot be prepared by semisynthesis from natural ingenol. Complex ingenanes resulting from divergent C-H oxidation of a common intermediate were found to interact with protein kinase C in a manner that correlates well with the oxidation state of the ingenane core. Even though previous work on ingenanes has suggested a strong correlation between potential to activate PKCδ and induction of neutrophil oxidative burst, the current study shows that the potential to activate PKCßII is of key importance while interaction with PKCδ is dispensable. Thus, key modifications of the ingenane core allowed PKC isoform selectivity wherein PKCδ-driven activation of keratinocytes is strongly reduced or even absent while PKCßII-driven activation of neutrophils is retained.


Assuntos
Diterpenos/química , Diterpenos/farmacologia , Proteína Quinase C/metabolismo , Diterpenos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Isoenzimas/química , Isoenzimas/metabolismo , Conformação Molecular , Oxirredução , Proteína Quinase C/química
12.
J Am Chem Soc ; 136(15): 5799-810, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24712341

RESUMO

The complex diterpenoid (+)-ingenol possesses a uniquely challenging scaffold and constitutes the core of a recently approved anti-cancer drug. This full account details the development of a short synthesis of 1 that takes place in two separate phases (cyclase and oxidase) as loosely modeled after terpene biosynthesis. Initial model studies establishing the viability of a Pauson-Khand approach to building up the carbon framework are recounted. Extensive studies that led to the development of a 7-step cyclase phase to transform (+)-3-carene into a suitable tigliane-type core are also presented. A variety of competitive pinacol rearrangements and cyclization reactions were overcome to develop a 7-step oxidase phase producing (+)-ingenol. The pivotal pinacol rearrangement is further examined through DFT calculations, and implications for the biosynthesis of (+)-ingenol are discussed.


Assuntos
Diterpenos/síntese química , Diterpenos/química , Modelos Químicos
13.
Nat Prod Rep ; 31(4): 419-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24337165

RESUMO

The ability to procure useful quantities of a molecule by simple, scalable routes is emerging as an important goal in natural product synthesis. Approaches to molecules that yield substantial material enable collaborative investigations (such as SAR studies or eventual commercial production) and inherently spur innovation in chemistry. As such, when evaluating a natural product synthesis, scalability is becoming an increasingly important factor. In this Highlight, we discuss recent examples of natural product synthesis from our laboratory and others, where the preparation of gram-scale quantities of a target compound or a key intermediate allowed for a deeper understanding of biological activities or enabled further investigational collaborations.


Assuntos
Produtos Biológicos/síntese química , Produtos Biológicos/química , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
14.
Science ; 341(6148): 878-82, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23907534

RESUMO

Ingenol is a diterpenoid with unique architecture and has derivatives possessing important anticancer activity, including the recently Food and Drug Administration-approved Picato, a first-in-class drug for the treatment of the precancerous skin condition actinic keratosis. Currently, that compound is sourced inefficiently from Euphorbia peplus. Here, we detail an efficient, highly stereocontrolled synthesis of (+)-ingenol proceeding in only 14 steps from inexpensive (+)-3-carene and using a two-phase design. This synthesis will allow for the creation of fully synthetic analogs of bioactive ingenanes to address pharmacological limitations and provides a strategic blueprint for chemical production. These results validate two-phase terpene total synthesis as not only an academic curiosity but also a viable alternative to isolation or bioengineering for the efficient preparation of polyoxygenated terpenoids at the limits of chemical complexity.


Assuntos
Antineoplásicos/síntese química , Diterpenos/síntese química , Monoterpenos/química , Monoterpenos Bicíclicos , Catálise , Euphorbia/química , Oxirredutases/química , Estereoisomerismo
16.
Org Lett ; 14(4): 1070-3, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22296114

RESUMO

A robust and scalable synthesis of a novel, cyano-substituted Danishefsky-type diene and its use in the Diels-Alder reaction with various dienophiles is reported. The diene allows for the rapid construction of highly substituted aminonaphthoquinones that occur in numerous ansamycin antibiotics.


Assuntos
Antibacterianos/síntese química , Lactamas Macrocíclicas/síntese química , Naftoquinonas/química , Aminação , Modelos Moleculares , Estrutura Molecular
18.
Bioorg Med Chem Lett ; 19(15): 4427-31, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19523824

RESUMO

Cyclization of recently reported linear phosphino dipeptide isostere inhibitors of BACE1 via side chain olefin metathesis yielded macrocyclic BACE1 inhibitors. The most potent compound II-P1 (IC(50) of 47nM) and the corresponding linear analog I were tested for serum stability. The approach led to three times prolonged half life serum stability of 44min for the macrocyclic inhibitor II-P1 compared to the linear compound I.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Química Farmacêutica/métodos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/química , Dipeptídeos/química , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Knockout , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Fenótipo , Fatores de Tempo
19.
Curr Opin Drug Discov Devel ; 11(6): 803-19, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18946845

RESUMO

A selection of carbon-fluorine bond-forming reactions that have been developed in the recent past are presented. An overview of the most common fluorination reagents is followed by descriptions of fluorination reactions that are organized by reactivity. The distinction between nucleophilic and electrophilic fluorinations is highlighted, as well as between aliphatic and aromatic fluorinations. Each section is divided into more specific reaction classes and examples for the synthesis of pharmaceuticals, [18F]radiolabeling and mechanistic investigations are provided.


Assuntos
Carbono/química , Halogenação , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...