Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 6(6): 777-784, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619993

RESUMO

Long QT syndrome (LQTS) is characterized by a prolonged QT-interval on electrocardiogram and by increased risk of sudden death. One of the most common and potentially life-threatening electrolyte disturbances is hypokalemia, characterized by low concentrations of K+ Using a multielectrode array platform and current clamp technique, we investigated the effect of low extracellular K+ concentration ([K+]Ex) on the electrophysiological properties of hiPSC-derived cardiomyocytes (CMs) generated from a healthy control subject (WT) and from two symptomatic patients with type 1 of LQTS carrying G589D (LQT1A) or IVS7-2A>G mutation (LQT1B) in KCNQ1 The baseline prolongations of field potential durations (FPDs) and action potential durations (APDs) were longer in LQT1-CMs than in WT-CMs. Exposure to low [K+]Ex prolonged FPDs and APDs in a concentration-dependent fashion. LQT1-CMs were found to be more sensitive to low [K+]Ex compared to WT-CMs. At baseline, LQT1A-CMs had more prolonged APDs than LQT1B-CMs, but low [K+]Ex caused more pronounced APD prolongation in LQT1B-CMs. Early afterdepolarizations in the action potentials were observed in a subset of LQT1A-CMs with further prolonged baseline APDs and triangular phase 2 profiles. This work demonstrates that the hiPSC-derived CMs are sensitive to low [K+]Ex and provide a platform to study acquired LQTS.

2.
Stem Cell Rev Rep ; 12(6): 698-707, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27646833

RESUMO

Healthy human heart rate fluctuates overtime showing long-range fractal correlations. In contrast, various cardiac diseases and normal aging show the breakdown of fractal complexity. Recently, it was shown that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) intrinsically exhibit fractal behavior as in humans. Here, we investigated the fractal complexity of hiPSC-derived long QT-cardiomyocytes (LQT-CMs). We recorded extracellular field potentials from hiPSC-CMs at baseline and under the effect of various compounds including ß-blocker bisoprolol, ML277, a specific and potent IKs current activator, as well as JNJ303, a specific IKs blocker. From the peak-to-peak-intervals, we determined the long-range fractal correlations by using detrended fluctuation analysis. Electrophysiologically, the baseline corrected field potential durations (cFPDs) were more prolonged in LQT-CMs than in wildtype (WT)-CMs. Bisoprolol did not have significant effects to the cFPD in any CMs. ML277 shortened cFPD in a dose-dependent fashion by 11 % and 5-11 % in WT- and LQT-CMs, respectively. JNJ303 prolonged cFPD in a dose-dependent fashion by 22 % and 7-13 % in WT- and LQT-CMs, respectively. At baseline, all CMs showed fractal correlations as determined by short-term scaling exponent α. However, in all CMs, the α was increased when pharmacological compounds were applied indicating of breakdown of fractal complexity. These findings suggest that the intrinsic mechanisms contributing to the fractal complexity are not altered in LQT-CMs. The modulation of IKs channel and ß1-adrenoreceptors by pharmacological compounds may affect the fractal complexity of the hiPSC-CMs.


Assuntos
Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/fisiologia , Miócitos Cardíacos/fisiologia , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Adulto , Bisoprolol/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Fractais , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo/patologia , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Piperidinas/farmacologia , Tiazóis/farmacologia , Fatores de Tempo , Compostos de Tosil/farmacologia
3.
Springerplus ; 5: 234, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27026928

RESUMO

Human induced pluripotent stem cells (hiPSC) have enabled a major step forward in pathophysiologic studies of inherited diseases and may also prove to be valuable in in vitro drug testing. Long QT syndrome (LQTS), characterized by prolonged cardiac repolarization and risk of sudden death, may be inherited or result from adverse drug effects. Using a microelectrode array platform, we investigated the effects of six different drugs on the electrophysiological characteristics of human embryonic stem cell-derived cardiomyocytes as well as hiPSC-derived cardiomyocytes from control subjects and from patients with type 1 (LQT1) and type 2 (LQT2) of LQTS. At baseline the repolarization time was significantly longer in LQTS cells compared to controls. Isoprenaline increased the beating rate of all cell lines by 10-73 % but did not show any arrhythmic effects in any cell type. Different QT-interval prolonging drugs caused prolongation of cardiac repolarization by 3-13 % (cisapride), 10-20 % (erythromycin), 8-23 % (sotalol), 16-42 % (quinidine) and 12-27 % (E-4031), but we did not find any systematic differences in sensitivity between the control, LQT1 and LQT2 cell lines. Sotalol, quinidine and E-4031 also caused arrhythmic beats and beating arrests in some cases. In summary, the drug effects on these patient-specific cardiomyocytes appear to recapitulate clinical observations and provide further evidence that these cells can be applied for in vitro drug testing to probe their vulnerability to arrhythmia.

4.
PLoS One ; 8(9): e73637, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069215

RESUMO

Cardiac safety pharmacology requires in-vitro testing of all drug candidates before clinical trials in order to ensure they are screened for cardio-toxic effects which may result in severe arrhythmias. Micro-electrode arrays (MEA) serve as a complement to current in-vitro methods for drug safety testing. However, MEA recordings produce huge volumes of data and manual analysis forms a bottleneck for high-throughput screening. To overcome this issue, we have developed an offline, semi-automatic data analysis software, 'Cardiomyocyte MEA Data Analysis (CardioMDA)', equipped with correlation analysis and ensemble averaging techniques to improve the accuracy, reliability and throughput rate of analysing human pluripotent stem cell derived cardiomyocyte (CM) field potentials. With the program, true field potential and arrhythmogenic complexes can be distinguished from one another. The averaged field potential complexes, analysed using our software to determine the field potential duration, were compared with the analogous values obtained from manual analysis. The reliability of the correlation analysis algorithm, evaluated using various arrhythmogenic and morphology changing signals, revealed a mean sensitivity and specificity of 99.27% and 94.49% respectively, in determining true field potential complexes. The field potential duration of the averaged waveforms corresponded well to the manually analysed data, thus demonstrating the reliability of the software. The software has also the capability to create overlay plots for signals recorded under different drug concentrations in order to visualize and compare the magnitude of response on different ion channels as a result of drug treatment. Our novel field potential analysis platform will facilitate the analysis of CM MEA signals in semi-automated way and provide a reliable means of efficient and swift analysis for cardiomyocyte drug or disease model studies.


Assuntos
Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Software , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...