Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3762, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704378

RESUMO

Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Epitopos , Flagelina , Espécies Reativas de Oxigênio , Flagelina/metabolismo , Flagelina/imunologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Epitopos/imunologia , Epitopos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subtilisinas/metabolismo , Subtilisinas/genética , Proteólise , Mutação
2.
Nat Commun ; 15(1): 1194, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378616

RESUMO

Plasma membrane (PM) H+-ATPase is crucial for light-induced stomatal opening and phosphorylation of a penultimate residue, Thr948 (pen-Thr, numbering according to Arabidopsis AHA1) is required for enzyme activation. In this study, a comprehensive phosphoproteomic analysis using guard cell protoplasts from Vicia faba shows that both red and blue light increase the phosphorylation of Thr881, of PM H+-ATPase. Light-induced stomatal opening and the blue light-induced increase in stomatal conductance are reduced in transgenic Arabidopsis plants expressing mutant AHA1-T881A in aha1-9, whereas the blue light-induced phosphorylation of pen-Thr is unaffected. Auxin and photosynthetically active radiation induce the phosphorylation of both Thr881 and pen-Thr in etiolated seedlings and leaves, respectively. The dephosphorylation of phosphorylated Thr881 and pen-Thr are mediated by type 2 C protein phosphatase clade D isoforms. Taken together, Thr881 phosphorylation, in addition of the pen-Thr phosphorylation, are important for PM H+-ATPase function during physiological responses, such as light-induced stomatal opening in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fosforilação , Luz , Estômatos de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo
3.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849250

RESUMO

Cell division is essential for development and involves spindle assembly, chromosome separation, and cytokinesis. In plants, the genetic tools for controlling the events in cell division at the desired time are limited and ineffective owing to high redundancy and lethality. Therefore, we screened cell division-affecting compounds in Arabidopsis thaliana zygotes, whose cell division is traceable without time-lapse observations. We then determined the target events of the identified compounds using live-cell imaging of tobacco BY-2 cells. Subsequently, we isolated two compounds, PD-180970 and PP2, neither of which caused lethal damage. PD-180970 disrupted microtubule (MT) organization and, thus, nuclear separation, and PP2 blocked phragmoplast formation and impaired cytokinesis. Phosphoproteomic analysis showed that these compounds reduced the phosphorylation of diverse proteins, including MT-associated proteins (MAP70) and class II Kinesin-12. Moreover, these compounds were effective in multiple plant species, such as cucumber (Cucumis sativus) and moss (Physcomitrium patens). These properties make PD-180970 and PP2 useful tools for transiently controlling plant cell division at key manipulation nodes conserved across diverse plant species.


Assuntos
Arabidopsis , Citocinese , Divisão Celular , Proteínas Associadas aos Microtúbulos/genética , Segregação de Cromossomos , Microtúbulos
4.
Open Biol ; 13(2): 220220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809799

RESUMO

CK2 is a Ser/Thr protein kinase composed of two catalytic (α/α') subunits and a non-catalytic ß-subunit dimer, whose activity is often abnormally high in cancer cells. The concept that CK2 may be dispensable for cell survival has been challenged by the finding that viable CK2α/α' knock-out myoblast clones still express small amounts of an N-terminally deleted α' subunit generated during the CRISPR/Cas9 procedure. Here we show that, although the overall CK2 activity of these CK2α(-/-)/Δα' (KO) cells is less than 10% compared to wild-type (WT) cells, the number of phosphosites with the CK2 consensus is comparable to that of WT cells. A more in-depth analysis, however, reveals that the two phosphoproteomes are not superimposable according to a number of criteria, notably a functional analysis of the phosphoproteome found in the two types of cells, and variable sensitivity of the phosphosites to two structurally unrelated CK2 inhibitors. These data support the idea that a minimal CK2 activity, as in KO cells, is sufficient to perform basic housekeeping functions essential for cell survival, but not to accomplish several specialized tasks required upon cell differentiation and transformation. From this standpoint, a controlled downregulation of CK2 would represent a safe and valuable anti-cancer strategy.


Assuntos
Caseína Quinase II , Mioblastos , Caseína Quinase II/metabolismo , Linhagem Celular , Mioblastos/metabolismo
5.
Commun Biol ; 6(1): 89, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690657

RESUMO

Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.


Assuntos
Clorófitas , Genoma , Filogenia , Clorófitas/genética , Genômica , Água Doce
6.
ACS Pharmacol Transl Sci ; 5(8): 603-615, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35983275

RESUMO

Serum proteins affect the in vivo fate and cellular uptake of arginine-rich cell-penetrating peptides (CPPs) and drugs delivered by CPPs. Although the binding of CPPs to serum proteins may possibly reduce their cellular uptake to some extent, it may also prolong their circulation half-life in vivo. We aimed to identify novel binding proteins of arginine-rich CPPs in serum to better understand their in vivo fate and develop more sophisticated drug delivery systems using CPPs. Isothermal titration calorimetry analysis suggests that albumin, the most abundant protein in serum, binds to d-forms of oligoarginine; however, the dissociation constants are several tens of a micromolar. Candidate proteins with the potential of binding to arginine-rich CPPs in serum were then explored using nondenaturing polyacrylamide gel electrophoresis followed by mass spectrometry analysis. Studies using fluorescence correlation spectroscopy determined hemopexin as a potential binding partner of d-forms of arginine-rich CPPs, including d-octaarginine (r 8) and the d-form of the peptide, corresponding to HIV-1 Rev (34-50), with dissociation constants of submicromolar to micromolar range. Using flow cytometry and a split-luciferase-based system, the promotion effect of hemopexin on the total cellular uptake and cytosolic localization of cargos conjugated with these CPPs was confirmed. Therefore, this study elucidated hemopexin as a potential binding partner of d-arginine-rich CPPs that may affect their in vivo fate and cellular uptake.

8.
Nat Commun ; 13(1): 2533, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534485

RESUMO

Metabolic distribution of fatty acid to organelles is an essential biological process for energy homeostasis as well as for the maintenance of membrane integrity, and the metabolic pathways are strictly regulated in response to environmental stimuli. Herein, we report a fluorescent fatty acid probe, which bears an azapyrene dye that changes its absorption and emission features depending on the microenvironment polarity of the organelle into which it is transported. Owing to the environmental sensitivity of this dye, the distribution of the metabolically incorporated probe in non-polar lipid droplets, medium-polarity membranes, and the polar aqueous regions, can be visualized in different colors. Based on density scatter plots of the fluorophore, we demonstrate that the degradation of triacylglycerols in lipid droplets occurs predominantly via lipolysis rather than lipophagy in nutrition-starved hepatocytes. This tool can thus be expected to significantly advance our understanding of the lipid metabolism in living organisms.


Assuntos
Ácidos Graxos , Corantes Fluorescentes , Ácidos Graxos/metabolismo , Corantes Fluorescentes/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia
9.
Nat Commun ; 13(1): 2005, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422486

RESUMO

In yeast, mitochondria are passed on to daughter cells via the actin cable, motor protein Myo2, and adaptor protein Mmr1. They are released from the actin-myosin machinery after reaching the daughter cells. We report that Mmr1 is rapidly degraded by the ubiquitin-proteasome system in Saccharomyces cerevisiae. Redundant ubiquitin ligases Dma1 and Dma2 are responsible for Mmr1 ubiquitination. Dma1/2-mediated Mmr1 ubiquitination requires phosphorylation, most likely at S414 residue by Ste20 and Cla4. These kinases are mostly localized to the growing bud and nearly absent from mother cells, ensuring phosphorylation and ubiquitination of Mmr1 after the mitochondria enter the growing bud. In dma1Δ dma2Δ cells, transported mitochondria are first stacked at the bud-tip and then pulled back to the bud-neck. Stacked mitochondria in dma1Δ dma2Δ cells exhibit abnormal morphology, elevated respiratory activity, and increased level of reactive oxygen species, along with hypersensitivity to oxidative stresses. Collectively, spatiotemporally-regulated Mmr1 turnover guarantees mitochondrial homeostasis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Homeostase , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miosinas/metabolismo , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
10.
Oncogene ; 41(19): 2764-2777, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35414659

RESUMO

Previous therapeutic attempts to deplete cancer-associated fibroblasts (CAFs) or inhibit their proliferation in pancreatic ductal adenocarcinoma (PDAC) were not successful in mice or patients. Thus, CAFs may be tumor suppressive or heterogeneous, with distinct cancer-restraining and -promoting CAFs (rCAFs and pCAFs, respectively). Here, we showed that induced expression of the glycosylphosphatidylinositol-anchored protein Meflin, a rCAF-specific marker, in CAFs by genetic and pharmacological approaches improved the chemosensitivity of mouse PDAC. A chemical library screen identified Am80, a synthetic, nonnatural retinoid, as a reagent that effectively induced Meflin expression in CAFs. Am80 administration improved the sensitivity of PDAC to chemotherapeutics, accompanied by increases in tumor vessel area and intratumoral drug delivery. Mechanistically, Meflin was involved in the suppression of tissue stiffening by interacting with lysyl oxidase to inhibit its collagen crosslinking activity. These data suggested that modulation of CAF heterogeneity may represent a strategy for PDAC treatment.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Microambiente Tumoral , Neoplasias Pancreáticas
11.
Plant Cell Physiol ; 63(4): 450-462, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35086143

RESUMO

The circadian clock is an internal timekeeping system that governs about 24 h biological rhythms of a broad range of developmental and metabolic activities. The clocks in eukaryotes are thought to rely on lineage-specific transcriptional-translational feedback loops. However, the mechanisms underlying the basic transcriptional regulation events for clock function have not yet been fully explored. Here, through a combination of chemical biology and genetic approaches, we demonstrate that phosphorylation of RNA polymerase II by CYCLIN DEPENDENT KINASE C; 2 (CDKC;2) is required for maintaining the circadian period in Arabidopsis. Chemical screening identified BML-259, the inhibitor of mammalian CDK2/CDK5, as a compound lengthening the circadian period of Arabidopsis. Short-term BML-259 treatment resulted in decreased expression of most clock-associated genes. Development of a chemical probe followed by affinity proteomics revealed that BML-259 binds to CDKC;2. Loss-of-function mutations of cdkc;2 caused a long period phenotype. In vitro experiments demonstrated that the CDKC;2 immunocomplex phosphorylates the C-terminal domain of RNA polymerase II, and BML-259 inhibits this phosphorylation. Collectively, this study suggests that transcriptional activity maintained by CDKC;2 is required for proper period length, which is an essential feature of the circadian clock in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Mamíferos/metabolismo , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
12.
Mol Pharm ; 19(2): 558-567, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958576

RESUMO

Stapled peptides are a promising class of conformationally restricted peptides for modulating protein-protein interactions (PPIs). However, the low membrane permeability of these peptides is an obstacle to their therapeutic applications. It is common that only a few hydrophobic amino acid residues are mandatory for stapled peptides to bind to their target proteins. Hoping to create a novel class of membrane-permeable PPI inhibitors, the phenylalanine, tryptophan, and leucine residues that play a critical role in inhibiting the p53-HDM2 interaction were grafted into the framework of CADY2─a cell-penetrating peptide (CPP) having a helical propensity. Two analogues (CADY-3FWL and CADY-10FWL) induced apoptotic cell death but lacked the intended HDM2 interaction. Pull-down experiments followed by proteomic analysis led to the elucidation of nesprin-2 as a candidate binding target. Nesprin-2 is considered to play a role in the nuclear translocation of ß-catenin upon activation of the Wnt signaling pathway, which leads to the expression of antiapoptosis proteins and cell survival. Cells treated with the two analogues showed decreased nuclear localization of ß-catenin and reduced mRNA expression of related antiapoptotic proteins. These data suggest inhibition of ß-catenin nuclear translocation as a possible mode of action of the described cell-penetrating stapled peptides.


Assuntos
Peptídeos Penetradores de Células , Aminoácidos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Proteômica , Via de Sinalização Wnt
13.
Curr Biol ; 32(1): 164-175.e8, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34798048

RESUMO

To survive fluctuating water availability on land, terrestrial plants must be able to sense water stresses, such as drought and flooding. The plant hormone abscisic acid (ABA) and plant-specific SNF1-related protein kinase 2 (SnRK2) play key roles in plant osmostress responses. We recently reported that, in the moss Physcomitrium patens, ABA and osmostress-dependent SnRK2 activation requires phosphorylation by an upstream RAF-like kinase (ARK). This RAF/SnRK2 module is an evolutionarily conserved mechanism of osmostress signaling in land plants. Surprisingly, ARK is also an ortholog of Arabidopsis CONSTITUTIVE RESPONSE 1 (CTR1), which negatively regulates the ethylene-mediated submergence response of P. patens, indicating a nexus for cross-talk between the two signaling pathways that regulate responses to water availability. However, the mechanism through which the ARK/SnRK2 module is activated in response to water stress remains to be elucidated. Here, we show that a group of ethylene-receptor-related sensor histidine kinases (ETR-HKs) is essential for ABA and osmostress responses in P. patens. The intracellular kinase domain of an ETR-HK from P. patens physically interacts with ARK at the endoplasmic reticulum in planta. Moreover, HK disruptants lack ABA-dependent autophosphorylation of the critical serine residue in the activation loop of ARK, leading to loss of SnRK2 activation in response to ABA and osmostress. Collectively with the notion that ETR-HKs participate in submergence responses, our present data suggest that the HK/ARK module functions as an integration unit for environmental water availability to elicit optimized water stress responses in the moss P. patens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Histidina/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo
14.
Cell Rep ; 37(11): 110125, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910911

RESUMO

Plants tailor immune responses to defend against pathogens with different lifestyles. In this process, antagonism between the immune hormones salicylic acid (SA) and jasmonic acid (JA) optimizes transcriptional signatures specifically to the attacker encountered. Antagonism is controlled by the transcription cofactor NPR1. The indispensable role of NPR1 in activating SA-responsive genes is well understood, but how it functions as a repressor of JA-responsive genes remains unclear. Here, we demonstrate that SA-induced NPR1 is recruited to JA-responsive promoter regions that are co-occupied by a JA-induced transcription complex consisting of the MYC2 activator and MED25 Mediator subunit. In the presence of SA, NPR1 physically associates with JA-induced MYC2 and inhibits transcriptional activation by disrupting its interaction with MED25. Importantly, NPR1-mediated inhibition of MYC2 is a major immune mechanism for suppressing pathogen virulence. Thus, NPR1 orchestrates the immune transcriptome not only by activating SA-responsive genes but also by acting as a corepressor of JA-responsive MYC2.


Assuntos
Aminoácidos/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Indenos/toxicidade , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Anti-Infecciosos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Correpressoras , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Pseudomonas syringae/química , Ácido Salicílico/farmacologia , Transdução de Sinais
15.
JACS Au ; 1(5): 578-585, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34467321

RESUMO

Growth factor receptors are activated through dimerization by the binding of their ligands and play pivotal roles in normal cell function. However, the aberrant activity of the receptors has been associated with cancer malignancy. One of the main causes of the aberrant receptor activation is the overexpression of receptors and the resultant formation of unliganded receptor dimers, which can be activated in the absence of external ligand molecules. Thus, the unliganded receptor dimer is a promising target to inhibit aberrant signaling in cancer. Here, we report an aptamer that specifically binds to fibroblast growth factor receptor 2b and inhibits the aberrant receptor activation and signaling. Our investigation suggests that this aptamer inhibits the formation of the receptor dimer occurring in the absence of external ligand molecules. This work presents a new inhibitory function of aptamers and the possibility of oligonucleotide-based therapeutics for cancer.

16.
ACS Chem Biol ; 16(8): 1557-1565, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34339163

RESUMO

Manipulating subcellular protein localization using light is a powerful approach for controlling signaling processes with high spatiotemporal precision. The most widely used strategy for this is based on light-induced protein heterodimerization. The use of small synthetic molecules that can control the localization of target proteins in response to light without the need for a second protein has several advantages. However, such methods have not been well established. Herein, we present a chemo-optogenetic approach for controlling protein localization using a photoactivatable self-localizing ligand (paSL). We developed a paSL that can recruit tag-fused proteins of interest from the cytoplasm to the plasma membrane within seconds upon light illumination. This paSL-induced protein translocation (paSLIPT) is reversible and enables the spatiotemporal control of signaling processes in living cells, even in a local region. paSLIPT can also be used to implement simultaneous optical stimulation and multiplexed imaging of molecular processes in a single cell, offering an attractive and novel chemo-optogenetic platform for interrogating and engineering dynamic cellular functions.


Assuntos
Carbamatos/farmacologia , Transporte Proteico/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/análogos & derivados , Trimetoprima/farmacologia , Animais , Carbamatos/metabolismo , Carbamatos/efeitos da radiação , Membrana Celular/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína/farmacologia , Cisteína/efeitos da radiação , Células HeLa , Humanos , Ligantes , Luz , Camundongos , Células NIH 3T3 , Optogenética/métodos , Trimetoprima/metabolismo , Trimetoprima/efeitos da radiação
17.
Am J Respir Cell Mol Biol ; 65(3): 319-330, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34264172

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by the invariably progressive deposition of fibrotic tissue in the lungs and overall poor prognosis. TG2 (transglutaminase 2) is an enzyme that crosslinks glutamine and lysine residues and is involved in IPF pathogenesis. Despite the accumulating evidence implicating TG2 as a critical enzyme, the causative function and direct target of TG2 relating to this pathogenesis remain unelucidated. Here, we clarified the distributions of TG2 protein/activity and conducted quantitative proteomics analyses of possible substrates crosslinked by TG2 on unfixed lung sections in a mouse pulmonary fibrosis model. We identified 126 possible substrates as markedly TG2-dependently increased in fibrotic lung. Gene ontology analysis revealed that these identified proteins were mostly enriched in the lipid metabolic process, immune system process, and protein transport. In addition, these proteins were enriched in 21 pathways, including phagosome, lipid metabolism, several immune responses, and protein processing in endoplasmic reticulum. Furthermore, the network analyses screened out the six clusters and top 20 hub proteins with higher scores, which are related to endoplasmic reticulum stress and peroxisome proliferator-activated receptor signals. Several enriched pathways and categories were identified, some of which were the same terms based on transcription analysis in IPF. Our results provide novel pathological molecular networks driven by protein crosslinking via TG2, which can lead to the development of new therapeutic targets for IPF.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Pulmão/enzimologia , Proteômica , Fibrose Pulmonar/epidemiologia , Transdução de Sinais , Transglutaminases/metabolismo , Animais , Pulmão/patologia , Camundongos , Proteína 2 Glutamina gama-Glutamiltransferase , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia
18.
Nat Plants ; 7(3): 310-316, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33686225

RESUMO

The nitrate transporter NRT2.1, which plays a central role in high-affinity nitrate uptake in roots, is activated at the post-translational level in response to nitrogen (N) starvation1,2. However, the critical enzymes required for the post-translational activation of NRT2.1 remain to be identified. Here, we show that a type 2C protein phosphatase, designated CEPD-induced phosphatase (CEPH), activates high-affinity nitrate uptake by directly dephosphorylating Ser501 of NRT2.1, a residue that functions as a negative phospho-switch in Arabidopsis2. CEPH is predominantly expressed in epidermal and cortex cells in roots and is upregulated by N starvation via a CEPDL2/CEPD1/2-mediated long-distance signalling from shoots3,4. The loss of CEPH leads to marked decreases in high-affinity nitrate uptake, tissue nitrate content and plant biomass. Collectively, our results identify CEPH as a crucial enzyme in the N-starvation-dependent activation of NRT2.1 and provide molecular and mechanistic insights into how plants regulate high-affinity nitrate uptake at the post-translational level in response to the N environment.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Arabidopsis/enzimologia , Glutarredoxinas/metabolismo , Fosforilação , Serina/metabolismo
19.
Plant Physiol ; 185(2): 533-546, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33655297

RESUMO

The Raf-like protein kinase abscisic acid (ABA) and abiotic stress-responsive Raf-like kinase (ARK) previously identified in the moss Physcomitrium (Physcomitrella) patens acts as an upstream regulator of subgroup III SNF1-related protein kinase2 (SnRK2), the key regulator of ABA and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2, including the role of ABA receptor-associated group A PP2C (PP2C-A), are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic P. patens ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance, and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in the wild type (WT). The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking protein phosphatase 2C-A (PP2C-A) was similar to that in the WT, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense mutant lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. Therefore, ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototype mechanism for ABA and abiotic stress responses in plants.


Assuntos
Ácido Abscísico/farmacologia , Bryopsida/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Bryopsida/enzimologia , Bryopsida/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Fusão Gênica , Genes Reporter , Mutação de Sentido Incorreto , Fosfopeptídeos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico
20.
Bioorg Med Chem Lett ; 39: 127850, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662538

RESUMO

We report the synthesis of a peptide nucleic acid (PNA) monomer containing preQ1, a positively charged guanine analogue. The new monomer was incorporated into PNA oligomers using standard Fmoc-chemistry-based solid-phase synthesis. The preQ1 unit-containing PNA oligomers exhibited improved affinity for their complementary DNA through electrostatic attraction, and their sequence specificity was not compromised. It could be beneficial to incorporate preQ1 into PNA oligomers instead of guanine when creating antisense/antigene agents or research tools.


Assuntos
Ácidos Nucleicos Peptídicos/síntese química , Pirimidinonas/química , Pirróis/química , Estrutura Molecular , Ácidos Nucleicos Peptídicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...