Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Biochem Biophys Res Commun ; 715: 150008, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685186

RESUMO

In the last decade, much attention was given to the study of physiological amyloid fibrils. These structures include A-bodies, which are the nucleolar fibrillar formations that appear in the response to acidosis and heat shock, and disassemble after the end of stress. One of the proteins involved in the biogenesis of A-bodies, regardless of the type of stress, is Von-Hippel Lindau protein (VHL). Known also as a tumor suppressor, VHL is capable to form amyloid fibrils both in vitro and in vivo in response to the environment acidification. As with most amyloidogenic proteins fusion with various tags is used to increase the solubility of VHL. Here, we first performed AFM-study of fibrils formed by VHL protein and by VHL fused with GST-tag (GST-VHL) at acidic conditions. It was shown that formed by full-length VHL fibrils are short heterogenic structures with persistent length of 2400 nm and average contour length of 409 nm. GST-tag catalyzes VHL amyloid fibril formation, superimpose chirality, increases length and level of hierarchy, but decreases rigidity of amyloid fibrils. The obtained data indicate that tagging can significantly affect the fibrillogenesis of the target protein.


Assuntos
Amiloide , Glutationa Transferase , Proteína Supressora de Tumor Von Hippel-Lindau , Amiloide/metabolismo , Amiloide/química , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Humanos , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Microscopia de Força Atômica
2.
Pharmaceutics ; 16(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38675140

RESUMO

Over the past few decades, photodynamic therapy (PDT) has evolved as a minimally invasive treatment modality offering precise control over cancer and various other diseases. To address inherent challenges associated with PDT, researchers have been exploring two promising avenues: the development of intelligent photosensitizers activated through light-induced energy transfers, charges, or electron transfers, and the disruption of photosensitive bonds. Moreover, there is a growing emphasis on the bioorthogonal delivery or activation of photosensitizers within tumors, enabling targeted deployment and activation of these intelligent photosensitive systems in specific tissues, thus achieving highly precise PDT. This concise review highlights advancements made over the last decade in the realm of light-activated or bioorthogonal photosensitizers, comparing their efficacy and shaping future directions in the advancement of photodynamic therapy.

3.
Eur J Med Chem ; 269: 116283, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461680

RESUMO

In this report, we present a novel prodrug strategy that can significantly improve the efficiency and selectivity of combined therapy for bladder cancer. Our approach involved the synthesis of a conjugate based on a chlorin-e6 photosensitizer and a derivative of the tyrosine kinase inhibitor cabozantinib, linked by a ß-glucuronidase-responsive linker. Upon activation by ß-glucuronidase, which is overproduced in various tumors and localized in lysosomes, this conjugate released both therapeutic modules within targeted cells. This activation was accompanied by the recovery of its fluorescence and the generation of reactive oxygen species. Investigation of photodynamic and dark toxicity in vitro revealed that the novel conjugate had an excellent safety profile and was able to inhibit tumor cells proliferation at submicromolar concentrations. Additionally, combined therapy effects were also observed in 3D models of tumor growth, demonstrating synergistic suppression through the activation of both photodynamic and targeted therapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Neoplasias da Bexiga Urinária , Humanos , Glucuronidase , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Porfirinas/farmacologia , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico
4.
Microsc Res Tech ; 87(6): 1131-1145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38270267

RESUMO

The nuclear export protein of the influenza A virus (NEP) is involved in many important processes of the virus life cycle. This makes it an attractive target for the treatment of a disease caused by a virus. Previously it has been shown, that recombinant variants of NEP are highly prone to aggregation in solution under various conditions with the formation of amyloid-like aggregates. In the present work, the amyloid nature of NEP aggregates was evidenced by Congo red binding assays. Atomic force microscopy has shown that NEP can form two types of spherical nanoparticles, which provide an alternative pathway for the formation of amyloid-like fibrils. Type I of these "fibrillogenic" spheres, formed under physiological conditions, represents the micelle-like particles with height 10-60 nm, which can generate worm-like flexible fibrils with the diameter 2.5-4.0 nm, length 20-500 nm and the Young's modulus ~73 MPa. Type II spherical aggregates with size of about 400-1000 nm, formed at elevated temperatures, includes fractions of drop-like and vesicle-like particles, generating more rigid amyloid-like fibrils with height of ~8 nm, and length of up to 2 µm. The hypothetical mechanism of fibril formation via nanospherical structures was suggested. RESEARCH HIGHLIGHTS: AFM has revealed two types of the influenza A virus nuclear export protein spherical aggregates. They provide an alternative pathway for the formation of amyloid-like fibrils. The mechanism of fibril formation via spherical structures is suggested.


Assuntos
Vírus da Influenza A , Proteínas Nucleares , Transporte Ativo do Núcleo Celular , Vírus da Influenza A/metabolismo , Microscopia de Força Atômica , Amiloide/metabolismo
5.
Cell Rep ; 42(10): 113254, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858466

RESUMO

Ebola virus (EBOV) and Bundibugyo virus (BDBV) belong to the family Filoviridae and cause a severe disease in humans. We previously isolated a large panel of monoclonal antibodies from B cells of human survivors from the 2007 Uganda BDBV outbreak, 16 survivors from the 2014 EBOV outbreak in the Democratic Republic of the Congo, and one survivor from the West African 2013-2016 EBOV epidemic. Here, we demonstrate that EBOV and BDBV are capable of spreading to neighboring cells through intercellular connections in a process that depends upon actin and T cell immunoglobulin and mucin 1 protein. We quantify spread through intercellular connections by immunofluorescence microscopy and flow cytometry. One of the antibodies, BDBV223, specific to the membrane-proximal external region, induces virus accumulation at the plasma membrane. The inhibiting activity of BDBV223 depends on BST2/tetherin.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Antígeno 2 do Estroma da Médula Óssea , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Antígenos CD , Antígeno 2 do Estroma da Médula Óssea/imunologia , Ebolavirus/imunologia , Proteínas Ligadas por GPI , Doença pelo Vírus Ebola/virologia
6.
Phys Chem Chem Phys ; 25(29): 20042-20048, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462080

RESUMO

An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction, 1H and 19F NMR spectroscopy, MALDI MS spectroscopy, and luminescence spectroscopy. A decrease in the symmetry of the coordination environment leads to a 50% reduction of the lifetime of the excited state. The obtained OLEDs based on mixed ligand europium complexes are significantly superior in luminance to OLEDs based on individual complexes.

7.
Res Sq ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131834

RESUMO

Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system in antibody-mediated protection remains unclear. In this study, we compared complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of the viral sole glycoprotein GP. Binding of GC-specific mAbs to GP induced complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs that did not. Moreover, treatment of cells with a glycosylation inhibitor increased the CDC activity, suggesting that N-linked glycans downregulate CDC. In the mouse model of EBOV infection, depletion of the complement system by cobra venom factor led to an impairment of protection exerted by GC-specific but not MPER-specific mAbs. Our data suggest that activation of the complement system is an essential component of antiviral protection by antibodies targeting GC of EBOV GP.

8.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243162

RESUMO

Members of the Ebolavirus genus demonstrate a marked differences in pathogenicity in humans with Ebola (EBOV) being the most pathogenic, Bundibugyo (BDBV) less pathogenic, and Reston (RESTV) is not known to cause a disease in humans. The VP24 protein encoded by members of the Ebolavirus genus blocks type I interferon (IFN-I) signaling through interaction with host karyopherin alpha nuclear transporters, potentially contributing to virulence. Previously, we demonstrated that BDBV VP24 (bVP24) binds with lower affinities to karyopherin alpha proteins relative to EBOV VP24 (eVP24), and this correlated with a reduced inhibition in IFN-I signaling. We hypothesized that modification of eVP24-karyopherin alpha interface to make it similar to bVP24 would attenuate the ability to antagonize IFN-I response. We generated a panel of recombinant EBOVs containing single or combinations of point mutations in the eVP24-karyopherin alpha interface. Most of the viruses appeared to be attenuated in both IFN-I-competent 769-P and IFN-I-deficient Vero-E6 cells in the presence of IFNs. However, the R140A mutant grew at reduced levels even in the absence of IFNs in both cell lines, as well as in U3A STAT1 knockout cells. Both the R140A mutation and its combination with the N135A mutation greatly reduced the amounts of viral genomic RNA and mRNA suggesting that these mutations attenuate the virus in an IFN-I-independent attenuation. Additionally, we found that unlike eVP24, bVP24 does not inhibit interferon lambda 1 (IFN-λ1), interferon beta (IFN-ß), and ISG15, which potentially explains the lower pathogenicity of BDBV relative to EBOV. Thus, the VP24 residues binding karyopherin alpha attenuates the virus by IFN-I-dependent and independent mechanisms.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Interferons/metabolismo , Ebolavirus/fisiologia , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Proteínas Virais/metabolismo , Interferon beta/genética , Interferon beta/metabolismo
9.
Elife ; 122023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971354

RESUMO

Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.


Assuntos
Doenças Transmissíveis , Vírus Hantaan , Infecções por Hantavirus , Orthohantavírus , Animais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Hantavirus/prevenção & controle , Roedores
10.
Database (Oxford) ; 20232023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763096

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seen multiple anti-SARS-CoV-2 antibodies being generated globally. It is difficult, however, to assemble a useful compendium of these biological properties if they are derived from experimental measurements performed at different sites under different experimental conditions. The Coronavirus Immunotherapeutic Consortium (COVIC) circumvents these issues by experimentally testing blinded antibodies side by side for several functional activities. To collect these data in a consistent fashion and make it publicly available, we established the COVIC database (COVIC-DB, https://covicdb.lji.org/). This database enables systematic analysis and interpretation of this large-scale dataset by providing a comprehensive view of various features such as affinity, neutralization, in vivo protection and effector functions for each antibody. Interactive graphs enable direct comparisons of antibodies based on select functional properties. We demonstrate how the COVIC-DB can be utilized to examine relationships among antibody features, thereby guiding the design of therapeutic antibody cocktails. Database URL  https://covicdb.lji.org/.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Anticorpos Antivirais , Imunoterapia
11.
Vaccines (Basel) ; 12(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38250853

RESUMO

Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein-peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays. Additionally, immunized animals developed mucosal antibodies in bronchoalveolar lavage fluids (BAL). The level of mucosal or serum ADMP and ADNKA antibodies was found to be UB-612 dose-dependent. Our results highlight that the novel subunit UB-612 vaccine is a potent B-cell immunogen inducing polyfunctional antibody responses contributing to anti-viral immunity and vaccine efficacy.

12.
Microbiol Spectr ; 10(6): e0183722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374040

RESUMO

We investigated the temporal profile of multiple components of the serological response after asymptomatic or mildly symptomatic SARS-CoV-2 infection, in a cohort of 67 previously SARS-CoV-2 naive young adults, up to 8.5 months after infection. We found a significant decrease of spike IgG and neutralization antibody titers from early (11 to 56 days) to late (4 to 8.5 months) time points postinfection. Over the study period, S1-specific IgG levels declined significantly faster than that of the S2-specific IgG. Further, serum antibodies from PCR-confirmed participants cross-recognized S2, but not S1, of the betacoronaviruses HKU1 and OC43, suggesting a greater degree of cross-reactivity of S2 among betacoronaviruses. Antibody-Dependent Natural Killer cell Activation (ADNKA) was detected at the early time point but significantly decreased at the late time point. Induction of serum Antibody-Dependent Monocyte Phagocytosis (ADMP) was detected in all the infected participants, and its levels remained stable over time. Additionally, a reduced percentage of participants had detectable neutralizing activity against the Beta (50%), Gamma (61 to 67%), and Delta (90 to 94%) variants, both early and late postinfection, compared to the ancestral strain (100%). Antibody binding to S1 and RBD of Beta, Gamma, Delta (1.7 to 2.3-fold decrease), and Omicron (10 to 16-fold decrease) variants was also significantly reduced compared to the ancestral SARS-CoV-2 strain. Overall, we found variable temporal profiles of specific components and functionality of the serological response to SARS-CoV-2 in young adults, which is characterized by lasting, but decreased, neutralizing activity and antibody binding to S1, stable ADMP activity, and relatively stable S2-specific IgG levels. IMPORTANCE Adaptive immunity mediated by antibodies is important for controlling SARS-CoV-2 infection. While vaccines against COVID-19 are currently widely distributed, a high proportion of the global population is still unvaccinated. Therefore, understanding the dynamics and maintenance of the naive humoral immune response to SARS-CoV-2 is of great importance. In addition, long-term responses after asymptomatic infection are not well-characterized, given the challenges in identifying such cases. Here, we investigated the longitudinal humoral profile in a well-characterized cohort of young adults with documented asymptomatic or mildly symptomatic SARS-CoV-2 infection. By analyzing samples collected preinfection, early after infection and during late convalescence, we found that, while neutralizing activity decreased over time, high levels of serum S2 IgG and Antibody-Dependent Monocyte Phagocytosis (ADMP) activity were maintained up to 8.5 months after infection. This suggests that a subset of antibodies with specific functions could contribute to long-term protection against SARS-CoV-2 in convalescent unvaccinated individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto Jovem , Humanos , Vacinas contra COVID-19 , Monócitos , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes
13.
Nat Commun ; 13(1): 5814, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192374

RESUMO

Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.


Assuntos
Anticorpos Biespecíficos , COVID-19 , Anticorpos de Cadeia Única , Animais , Anticorpos Biespecíficos/genética , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico , Cricetinae , Humanos , Imunoglobulina G/genética , Camundongos , Testes de Neutralização , SARS-CoV-2/genética , Anticorpos de Cadeia Única/genética , Glicoproteína da Espícula de Coronavírus/genética
14.
Emerg Microbes Infect ; 11(1): 2724-2734, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287714

RESUMO

The development of safe and effective vaccines to respond to COVID-19 pandemic/endemic remains a priority. We developed a novel subunit protein-peptide COVID-19 vaccine candidate (UB-612) composed of: (i) receptor binding domain of SARS-CoV-2 spike protein fused to a modified single-chain human IgG1 Fc; (ii) five synthetic peptides incorporating conserved helper and cytotoxic T lymphocyte (Th/CTL) epitopes derived from SARS-CoV-2 structural proteins (three from S2 subunit, one from membrane and one from nucleocapsid), and one universal Th peptide; (iii) aluminum phosphate as adjuvant. The immunogenicity and protective immunity induced by UB-612 vaccine were evaluated in four animal models: Sprague-Dawley rats, AAV-hACE2 transduced BALB/c mice, rhesus and cynomolgus macaques. UB-612 vaccine induced high levels of neutralizing antibody and T-cell responses, in all animals. The immune sera from vaccinated animals neutralized the SARS-CoV-2 original wild-type strains and multiple variants of concern, including Delta and Omicron. The vaccination significantly reduced viral loads, lung pathology scores, and disease progression after intranasal and intratracheal challenge with SARS-CoV-2 in mice, rhesus and cynomolgus macaques. UB-612 has been tested in primary regimens in Phase 1 and Phase 2 clinical studies and is currently being evaluated in a global pivotal Phase 3 clinical study as a single dose heterologous booster.


Assuntos
COVID-19 , Vacinas Virais , Ratos , Camundongos , Humanos , Animais , SARS-CoV-2 , Vacinas contra COVID-19 , Anticorpos Amplamente Neutralizantes , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Ratos Sprague-Dawley , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Vacinas de Subunidades Antigênicas/genética , Camundongos Endogâmicos BALB C , Macaca mulatta , Anticorpos Antivirais
15.
Toxins (Basel) ; 14(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36287938

RESUMO

Secreted phospholipases A2 (sPLA2s) are peripheral membrane enzymes that hydrolyze phospholipids in the sn-2 position. The action of sPLA2 is associated with the work of two active sites. One, the interface binding site (IBS), is needed to bind the enzyme to the membrane surface. The other one, the catalytic site, is needed to hydrolyze the substrate. The interplay between sites, how the substrate protrudes to, and how the hydrolysis products release from, the catalytic site remains in the focus of investigations. Here, we report that bee venom PLA2 has two additional interface binding modes and enzyme activity through constant switching between three different orientations (modes of binding), only one of which is responsible for substrate uptake from the bilayer. The finding was obtained independently using atomic force microscopy and molecular dynamics. Switching between modes has biological significance: modes are steps of the enzyme moving along the membrane, product release in biological milieu, and enzyme desorption from the bilayer surface.


Assuntos
Venenos de Abelha , Fosfolipases A2 Secretórias , Bicamadas Lipídicas/metabolismo , Hidrólise , Fosfolipídeos/metabolismo
16.
PLoS Pathog ; 18(5): e1010518, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584193

RESUMO

The three human pathogenic ebolaviruses: Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) virus, cause severe disease with high fatality rates. Epitopes of ebolavirus glycoprotein (GP) recognized by antibodies with binding breadth for all three ebolaviruses are of major interest for rational vaccine design. In particular, the heptad repeat 2 -membrane-proximal external region (HR2-MPER) epitope is relatively conserved between EBOV, BDBV, and SUDV GP and targeted by human broadly-neutralizing antibodies. To study whether this epitope can serve as an immunogen for the elicitation of broadly-reactive antibody responses, protein design in Rosetta was employed to transplant the HR2-MPER epitope identified from a co-crystal structure with the known broadly-reactive monoclonal antibody (mAb) BDBV223 onto smaller scaffold proteins. From computational analysis, selected immunogen designs were produced as recombinant proteins and functionally validated, leading to the identification of a sterile alpha motif (SAM) domain displaying the BDBV-HR2-MPER epitope near its C terminus as a promising candidate. The immunogen was fused to one component of a self-assembling, two-component nanoparticle and tested for immunogenicity in rabbits. Robust titers of cross-reactive serum antibodies to BDBV and EBOV GPs and moderate titers to SUDV GP were induced following immunization. To confirm the structural composition of the immunogens, solution NMR studies were conducted and revealed structural flexibility in the C-terminal residues of the epitope. Overall, our study represents the first report on an epitope-focused immunogen design based on the structurally challenging BDBV-HR2-MPER epitope.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Glicoproteínas , Coelhos
17.
NPJ Vaccines ; 7(1): 47, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468973

RESUMO

Respiratory tract vaccination has an advantage of needle-free delivery and induction of mucosal immune response in the portal of SARS-CoV-2 entry. We utilized human parainfluenza virus type 3 vector to generate constructs expressing the full spike (S) protein of SARS-CoV-2, its S1 subunit, or the receptor-binding domain, and tested them in hamsters as single-dose intranasal vaccines. The construct bearing full-length S induced high titers of neutralizing antibodies specific to S protein domains critical to the protein functions. Robust memory T cell responses in the lungs were also induced, which represent an additional barrier to infection and should be less sensitive than the antibody responses to mutations present in SARS-CoV-2 variants. Following SARS-CoV-2 challenge, animals were protected from the disease and detectable viral replication. Vaccination prevented induction of gene pathways associated with inflammation. These results indicate advantages of respiratory vaccination against COVID-19 and inform the design of mucosal SARS-CoV-2 vaccines.

18.
Front Immunol ; 13: 821730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479098

RESUMO

Young adults infected with SARS-CoV-2 are frequently asymptomatic or develop only mild disease. Because capturing representative mild and asymptomatic cases require active surveillance, they are less characterized than moderate or severe cases of COVID-19. However, a better understanding of SARS-CoV-2 asymptomatic infections might shed light into the immune mechanisms associated with the control of symptoms and protection. To this aim, we have determined the temporal dynamics of the humoral immune response, as well as the serum inflammatory profile, of mild and asymptomatic SARS-CoV-2 infections in a cohort of 172 initially seronegative prospectively studied United States Marine recruits, 149 of whom were subsequently found to be SARS-CoV-2 infected. The participants had blood samples taken, symptoms surveyed and PCR tests for SARS-CoV-2 performed periodically for up to 105 days. We found similar dynamics in the profiles of viral load and in the generation of specific antibody responses in asymptomatic and mild symptomatic participants. A proteomic analysis using an inflammatory panel including 92 analytes revealed a pattern of three temporal waves of inflammatory and immunoregulatory mediators, and a return to baseline for most of the inflammatory markers by 35 days post-infection. We found that 23 analytes were significantly higher in those participants that reported symptoms at the time of the first positive SARS-CoV-2 PCR compared with asymptomatic participants, including mostly chemokines and cytokines associated with inflammatory response or immune activation (i.e., TNF-α, TNF-ß, CXCL10, IL-8). Notably, we detected 7 analytes (IL-17C, MMP-10, FGF-19, FGF-21, FGF-23, CXCL5 and CCL23) that were higher in asymptomatic participants than in participants with symptoms; these are known to be involved in tissue repair and may be related to the control of symptoms. Overall, we found a serum proteomic signature that differentiates asymptomatic and mild symptomatic infections in young adults, including potential targets for developing new therapies and prognostic tests.


Assuntos
COVID-19 , Fatores de Crescimento de Fibroblastos , Humanos , Interleucina-17 , Metaloproteinase 10 da Matriz , Proteômica , SARS-CoV-2
19.
J Med Chem ; 65(3): 1695-1734, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35050607

RESUMO

Photodynamic therapy (PDT) is a treatment modality where light-mediated activation of photosensitizers in a patient's body leads to the generation of cytotoxic reactive oxygen species (ROS), eliminating cancer cells. One direction that has been firmly established over past years is the conjugation of photosensitizers with various molecules that demonstrate their own cytotoxic activity. As a result, improved selectivity and treatment outcomes are observed compared to those of unconjugated drugs. The attractiveness of such an approach is due to the variability of cytotoxic warheads and specific linkers available for the construction of conjugates. In this review, we summarize and analyze data concerning these inventions with the ultimate goal to find a promising conjugation partner for a porphyrinoid-based photosensitizer. The current challenges toward successful conjugation are also outlined and discussed. We hope that this review will motivate researchers to pay closer attention to conjugates and possibilities hidden in these molecules for the PDT of cancer.


Assuntos
Antineoplásicos/uso terapêutico , Metaloporfirinas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Humanos , Luz , Metaloporfirinas/química , Metaloporfirinas/farmacologia , Metaloporfirinas/efeitos da radiação , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
20.
J Clin Virol ; 145: 105024, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34781240

RESUMO

BACKGROUND: After receiving a COVID-19 vaccine, most recipients want to know if they are protected from infection and for how long. Since neutralizing antibodies are a correlate of protection, we developed a lateral flow assay (LFA) that measures levels of neutralizing antibodies from a drop of blood. The LFA is based on the principle that neutralizing antibodies block binding of the receptor-binding domain (RBD) to angiotensin-converting enzyme 2 (ACE2). METHODS: The ability of the LFA was assessed to correctly measure neutralization of sera, plasma or whole blood from patients with COVID-19 using SARS-CoV-2 microneutralization assays. We also determined if the LFA distinguished patients with seasonal respiratory viruses from patients with COVID-19. To demonstrate the usefulness of the LFA, we tested previously infected and non-infected COVID-19 vaccine recipients at baseline and after first and second vaccine doses. RESULTS: The LFA compared favorably with SARS-CoV-2 microneutralization assays with an area under the ROC curve of 98%. Sera obtained from patients with seasonal coronaviruses did not show neutralizing activity in the LFA. After a single mRNA vaccine dose, 87% of previously infected individuals demonstrated high levels of neutralizing antibodies. However, if individuals were not previously infected, only 24% demonstrated high levels of neutralizing antibodies after one vaccine dose. A second dose boosted neutralizing antibody levels just 8% higher in previously infected individuals, but over 63% higher in non-infected individuals. CONCLUSIONS: A rapid, semi-quantitative, highly portable and inexpensive neutralizing antibody test might be useful for monitoring rise and fall in vaccine-induced neutralizing antibodies to COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Testes Imediatos , Glicoproteína da Espícula de Coronavírus , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...