Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Kidney Int ; 105(4): 744-758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37995908

RESUMO

Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.


Assuntos
Síndrome Nefrótica , Animais , Criança , Humanos , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Queratina-8/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia
2.
Sci Transl Med ; 15(708): eabc8226, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556557

RESUMO

Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.


Assuntos
Nefropatias , Síndrome Nefrótica , Camundongos , Humanos , Animais , Síndrome Nefrótica/genética , Síndrome Nefrótica/terapia , Dependovirus/genética , Albuminúria , Modelos Genéticos , Terapia Genética/métodos , Modelos Animais de Doenças , Camundongos Knockout , Vetores Genéticos
3.
Commun Biol ; 4(1): 1351, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857869

RESUMO

The glomerulus is the filtration unit of the kidney. Injury to any component of this specialised structure leads to impaired filtration and eventually fibrosis and chronic kidney disease. Current two and three dimensional (2D and 3D) models that attempt to recreate structure and interplay between glomerular cells are imperfect. Most 2D models are simplistic and unrepresentative, and 3D organoid approaches are currently difficult to reproduce at scale and do not fit well with current industrial drug-screening approaches. Here we report a rapidly generated and highly reproducible 3D co-culture spheroid model (GlomSpheres), better demonstrating the specialised physical and molecular structure of a glomerulus. Co-cultured using a magnetic spheroid formation approach, conditionally immortalised (CI) human podocytes and glomerular endothelial cells (GEnCs) deposited mature, organized isoforms of collagen IV and Laminin. We demonstrate a dramatic upregulation of key podocyte (podocin, nephrin and podocalyxin) and GEnC (pecam-1) markers. Electron microscopy revealed podocyte foot process interdigitation and endothelial vessel formation. Incubation with pro-fibrotic agents (TGF-ß1, Adriamycin) induced extracellular matrix (ECM) dysregulation and podocyte loss, which were attenuated by the anti-fibrotic agent Nintedanib. Incubation with plasma from patients with kidney disease induced acute podocyte loss and ECM dysregulation relative to patient matched remission plasma, and Nintedanib reduced podocyte loss. Finally, we developed a rapid imaging approach to demonstrate the model's usefulness in higher throughput pharmaceutical screening. GlomSpheres therefore represent a robust, scalable, replacement for 2D in vitro glomerular disease models.


Assuntos
Técnicas de Cocultura/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Glomérulos Renais/fisiologia , Esferoides Celulares/fisiologia , Células Cultivadas , Células Endoteliais/fisiologia , Humanos , Podócitos/fisiologia
4.
Am J Hum Genet ; 104(2): 348-355, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661770

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) is characterized by high-range proteinuria and most often focal and segmental glomerulosclerosis (FSGS). Identification of mutations in genes causing SRNS has improved our understanding of disease mechanisms and highlighted defects in the podocyte, a highly specialized glomerular epithelial cell, as major factors in disease pathogenesis. By exome sequencing, we identified missense mutations in TBC1D8B in two families with an X-linked early-onset SRNS with FSGS. TBC1D8B is an uncharacterized Rab-GTPase-activating protein likely involved in endocytic and recycling pathways. Immunofluorescence studies revealed TBC1D8B presence in human glomeruli, and affected individual podocytes displayed architectural changes associated with migration defects commonly found in FSGS. In zebrafish we demonstrated that both knockdown and knockout of the unique TBC1D8B ortholog-induced proteinuria and that this phenotype was rescued by human TBC1D8B mRNA injection, but not by either of the two mutated mRNAs. We also showed an interaction between TBC1D8B and Rab11b, a key protein in vesicular recycling in cells. Interestingly, both internalization and recycling processes were dramatically decreased in affected individuals' podocytes and fibroblasts, confirming the crucial role of TBC1D8B in the cellular recycling processes, probably as a Rab11b GTPase-activating protein. Altogether, these results confirmed that pathogenic variations in TBC1D8B are involved in X-linked podocytopathy and points to alterations in recycling processes as a mechanism of SRNS.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação com Perda de Função , Síndrome Nefrótica/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Peixe-Zebra/genética , Animais , Transporte Biológico/genética , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Glomérulos Renais/metabolismo , Masculino , Podócitos/citologia , Podócitos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequenciamento do Exoma , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
5.
J Clin Invest ; 127(1): 199-214, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27918307

RESUMO

Outer retinal and renal glomerular functions rely on specialized vasculature maintained by VEGF that is produced by neighboring epithelial cells, the retinal pigment epithelium (RPE) and podocytes, respectively. Dysregulation of RPE- and podocyte-derived VEGF is associated with neovascularization in wet age-related macular degeneration (ARMD), choriocapillaris degeneration, and glomerular thrombotic microangiopathy (TMA). Since complement activation and genetic variants in inhibitory complement factor H (CFH) are also features of both ARMD and TMA, we hypothesized that VEGF and CFH interact. Here, we demonstrated that VEGF inhibition decreases local CFH and other complement regulators in the eye and kidney through reduced VEGFR2/PKC-α/CREB signaling. Patient podocytes and RPE cells carrying disease-associated CFH genetic variants had more alternative complement pathway deposits than controls. These deposits were increased by VEGF antagonism, a common wet ARMD treatment, suggesting that VEGF inhibition could reduce cellular complement regulatory capacity. VEGF antagonism also increased markers of endothelial cell activation, which was partially reduced by genetic complement inhibition. Together, these results suggest that VEGF protects the retinal and glomerular microvasculature, not only through VEGFR2-mediated vasculotrophism, but also through modulation of local complement proteins that could protect against complement-mediated damage. Though further study is warranted, these findings could be relevant for patients receiving VEGF antagonists.


Assuntos
Fator H do Complemento/metabolismo , Proteínas do Olho/metabolismo , Podócitos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Animais , Fator H do Complemento/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Feminino , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Knockout , Podócitos/patologia , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Epitélio Pigmentado da Retina/patologia , Microangiopatias Trombóticas/genética , Microangiopatias Trombóticas/metabolismo , Microangiopatias Trombóticas/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...