Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 345: 140540, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890799

RESUMO

Road transportation significantly contributes to environmental pollution, both in terms of exhaust and non-exhaust (brake wear) emissions. As was proven, brake wear debris is released in a wide variety of sizes, shapes, and compositions. Although studies confirming the possible adverse health and environmental impact of brake wear debris were published, there is no standardized methodology for their toxicity testing, and most studies focus only on one type of brake pad and/or one test. The lack of methodology is also related to the very small amount of material released during the laboratory testing. For these reasons, this study deals with the mixture of airborne brake wear debris from several commonly used low-metallic brake pads collected following the dynamometer testing. The mixture was chosen for better simulation of the actual state in the environment and to collect a sufficient amount of particles for thorough characterization (SEM, XRPD, XRF, chromatography, and particle size distribution) and phytotoxicity testing. The particle size distribution measurement revealed a wide range of particle sizes from nanometers to hundreds of nanometers, elemental and phase analysis determined the standard elements and compounds used in the brake pad formulation. The Hordeum vulgare and Sinapis alba were chosen as representatives of monocotyledonous and dicotyledonous plants. The germination was not significantly affected by the suspension of brake wear debris; however, the root elongation was negatively influenced in both cases. Sinapis alba (IC50 = 23.13 g L-1) was more affected than Hordeum vulgare (IC50 was not found in the studied concentration range) the growth of which was even slightly stimulated in the lowest concentrations of brake wear debris. The plant biomass was also negatively affected in the case of Sinapis alba, where the IC50 values of wet and dry roots were determined to be 44.83 g L-1 and 86.86 g L-1, respectively.


Assuntos
Hordeum , Sinapis , Tamanho da Partícula , Emissões de Veículos , Testes de Toxicidade
2.
Environ Sci Pollut Res Int ; 27(22): 28146-28154, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32410192

RESUMO

Mucosal surfaces are the first mechanical barrier preventing the entry of foreign particles into the organism. The study addresses the detection and analysis of metal-based solid particles in cytological mucus samples from the surface of human hypertrophic tissue in the inferior nasal turbinates in patients diagnosed with chronic rhinitis. Solid particles were characterized by scanning electron microscopy and Raman microspectroscopy; all the biological samples were also subjected to vibration magnetometry. Since the upper airways are the first part of the respiratory tract, which is exposed to inhaled particles, it can be assumed that inhaled particles may be partially deposited in this region. Scanning electron microscopy revealed the presence of metal-based solid particles/clusters in the majority of the analysed cytological mucus samples and also in hypertrophic tissues; in all groups, the particles were of submicron size. Raman microspectroscopy detected the presence of particles/clusters based on amorphous carbon, graphite, calcium carbonate, anatase and barite only in the hypertrophic tissue. The obtained results show that the composition of some of the solid particles (i.e. Ba, Zn, Fe and Ti) detected in the mucus from the surface of the hypertrophic tissues resembled the particles found in the hypertrophic tissue itself. It can be assumed that after the capture of the inhaled particles by the mucus, they penetrate into the deeper layers of tissue.


Assuntos
Rinite , Conchas Nasais , Humanos , Metais , Microscopia Eletrônica de Varredura , Muco
3.
J Nanosci Nanotechnol ; 19(5): 2869-2875, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30501793

RESUMO

Wear debris from automotive brake systems represents a major source of non-exhaust emissions from road traffic and its production increases with number of cars worldwide. However, impact of brake wear debris on the environment and organisms is still not clear. One of the most possible ways by which these particles may affect living organisms is oxidative stress. Production of reactive oxidative species may cause damage of basic cell components, lipids, proteins, etc. Aim of this study is to perform characterization of airborne and nonairborne fractions of brake wear debris generated during standard dynamometer tests and evaluation of its potential to induce oxidative stress via lipid peroxidation and carbonylation of proteins in non-cellular system. Elemental and phase composition were determined by scanning electron microscopy, Raman microspectroscopy, and X-ray powder diffraction analysis. Carbon in amorphous form and graphite, copper, and iron in form of oxides were identified as major components in both studied fractions. Characteristic size of studied wear particles was evaluated by dynamic light scattering. Both airborne and nonairborne samples showed ability to induce oxidative stress which results from determination of carbonylated proteins.

4.
J Nanosci Nanotechnol ; 19(5): 2934-2937, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30501802

RESUMO

The present article describes a method of the preparation of erbium oxide nanocrystallites (nano Er2O3) via thermal decomposition of a transient complex formed in situ from Er(NO3)3·5H2O and glycine. Decomposition of the complex occurred at about of (250±10) °C. Ultra-fine light pink powder of erbium oxide nanocrystallites was obtained via this method. The resulting nanocrystallites were characterized using X-ray powder diffraction analysis, which showed the nanocrystallites having the crystallite size equal to 10 nm. Morphology of the nanocrystallites was examined by scanning and transmission electron microscopy. Electron diffraction observed in transmission electron microscopy corresponds to the results obtained from X-ray diffraction analysis. The elemental composition of the product was confirmed by EDS analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...