Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(8): 083602, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709758

RESUMO

We report the detection of individual emitters in silicon belonging to seven different families of optically active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employed for integrated photonics. Single photon emission is demonstrated over the 1.1-1.55 µm range, spanning the O and C telecom bands. We analyze their photoluminescence spectra, dipolar emissions, and optical relaxation dynamics at 10 K. For a specific family, we show a constant emission intensity at saturation from 10 K to temperatures well above the 77 K liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these individual artificial atoms are promising systems to investigate for Si-based quantum technologies.

2.
Nano Lett ; 20(12): 8689-8695, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33175553

RESUMO

Single-photon emitting point defects in semiconductors have emerged as strong candidates for future quantum technology devices. In the present work, we exploit crystalline particles to investigate relevant defect localizations, emission shifting, and waveguiding. Specifically, emission from 6H-SiC micro- and nanoparticles ranging from 100 nm to 5 µm in size is collected using cathodoluminescence (CL), and we monitor signals attributed to the Si vacancy (VSi) as a function of its location. Clear shifts in the emission wavelength are found for emitters localized in the particle center and at the edges. By comparing spatial CL maps with strain analysis carried out in transmission electron microscopy, we attribute the emission shifts to compressive strain of 2-3% along the particle a-direction. Thus, embedding VSi qubit defects within SiC nanoparticles offers an interesting and versatile opportunity to tune single-photon emission energies while simultaneously ensuring ease of addressability via a self-assembled SiC nanoparticle matrix.

3.
Nanotechnology ; 29(31): 318002, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29749345

RESUMO

We respond to the comment by Thomas Walther and reaffirm the findings of our original article.

4.
Nanotechnology ; 28(10): 105703, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28085004

RESUMO

Using monochromated electron energy loss spectroscopy in a probe-corrected scanning transmission electron microscope we demonstrate band gap mapping in ZnO/ZnCdO thin films with a spatial resolution below 10 nm and spectral precision of 20 meV.

5.
Phys Rev Lett ; 110(17): 175503, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679745

RESUMO

Sublattice localization of impurities in compound semiconductors, e.g., ZnO, determines their electronic and optical action. Despite that the impurity position may be envisaged based on charge considerations, the actual localization is often unknown, limiting our understanding of the incorporation and possible doping mechanisms. In this study, we demonstrate that the preferential sublattice occupation for a number of impurities in ZnO can be revealed by monitoring Li diffusion. In particular, using ion implantation, the impurity incorporation into the Zn sublattice (holds for, B, Mg, P, Ag, Cd, and Sb) manifests in the formation of Li-depleted regions behind the implanted one, while Li pileups in the region of the implantation peaks for impurities residing on O sites, e.g., N. The behavior appears to be of general validity and the phenomena are explained in terms of the apparent surplus of Zn and O interstitials, related to the lattice localization of the impurities. Furthermore, Cd+O and Mg+O co-doping experiments revealed that implanted O atoms act as an efficient blocking "filter" for fast diffusing Zn interstitials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...