Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(10): 2996-3007, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37791909

RESUMO

As living drugs, engineered T cell therapies are revolutionizing disease treatment with their unique functional capabilities. However, they suffer from limitations of potentially unpredictable behavior, toxicities, and nontraditional pharmacokinetics. Engineering conditional control mechanisms responsive to tractable stimuli such as small molecules or light is thus highly desirable. We and others previously developed "universal" chimeric antigen receptors (CARs) that interact with coadministered antibody adaptors to direct target cell killing and T cell activation. Universal CARs are of high therapeutic interest due to their ability to simultaneously target multiple antigens on the same disease or different diseases by combining with adaptors to different antigens. Here, we further enhance the programmability and potential safety of universal CAR T cells by engineering OFF-switch adaptors that can conditionally control CAR activity, including T cell activation, target cell lysis, and transgene expression, in response to a small molecule or light stimulus. Moreover, in adaptor combination assays, OFF-switch adaptors were capable of orthogonal conditional targeting of multiple antigens simultaneously, following Boolean logic. OFF-switch adaptors represent a robust new approach for the precision targeting of universal CAR T cells with potential for enhanced safety.


Assuntos
Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Antígenos , Ativação Linfocitária , Linfócitos T
2.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292935

RESUMO

As living drugs, engineered T cell therapies are revolutionizing disease treatment with their unique functional capabilities. However, they suffer from limitations of potentially unpredictable behavior, toxicities, and non-traditional pharmacokinetics. Engineering conditional control mechanisms responsive to tractable stimuli such as small molecules or light is thus highly desirable. We and others previously developed "universal" chimeric antigen receptors (CARs) that interact with co-administered antibody adaptors to direct target cell killing and T cell activation. Universal CARs are of high therapeutic interest due to their ability to simultaneously target multiple antigens on the same disease or different diseases by combining with adaptors to different antigens. Here, we further enhance the programmability and potential safety of universal CAR T cells by engineering OFF-switch adaptors that can conditionally control CAR activity, including T cell activation, target cell lysis, and transgene expression, in response to a small molecule or light stimulus. Moreover, in adaptor combination assays, OFF-switch adaptors were capable of orthogonal conditional targeting of multiple antigens simultaneously following Boolean logic. OFF-switch adaptors represent a robust new approach for precision targeting of universal CAR T cells with potential for enhanced safety.

3.
Nat Commun ; 14(1): 2463, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160880

RESUMO

Chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors are engineered cell-surface receptors that sense a target antigen and respond by activating T cell receptor signaling or a customized gene program, respectively. Here, to expand the targeting capabilities of these receptors, we develop "universal" receptor systems for which receptor specificity can be directed post-translationally via covalent attachment of a co-administered antibody bearing a benzylguanine (BG) motif. A SNAPtag self-labeling enzyme is genetically fused to the receptor and reacts with BG-conjugated antibodies for covalent assembly, programming antigen recognition. We demonstrate that activation of SNAP-CAR and SNAP-synNotch receptors can be successfully targeted by clinically relevant BG-conjugated antibodies, including anti-tumor activity of SNAP-CAR T cells in vivo in a human tumor xenograft mouse model. Finally, we develop a mathematical model to better define the parameters affecting universal receptor signaling. SNAP receptors provide a powerful strategy to post-translationally reprogram the targeting specificity of engineered cells.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Anticorpos , Modelos Animais de Doenças , Xenoenxertos , Transplante Heterólogo
4.
Sci Signal ; 14(687)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131021

RESUMO

Expression of the transmembrane protein Tim-3 is increased on dysregulated T cells undergoing chronic activation, including during chronic infection and in solid tumors. Thus, Tim-3 is generally thought of as an inhibitory protein. We and others previously reported that under some circumstances, Tim-3 exerts paradoxical costimulatory activity in T cells (and other cells), including enhancement of the phosphorylation of ribosomal S6 protein. Here, we examined the upstream signaling pathways that control Tim-3-mediated increases in phosphorylated S6 in T cells. We also defined the localization of Tim-3 relative to the T cell immune synapse and its effects on downstream signaling. Recruitment of Tim-3 to the immune synapse was mediated exclusively by the transmembrane domain, replacement of which impaired the ability of Tim-3 to costimulate T cell receptor (TCR)-dependent S6 phosphorylation. Furthermore, enforced localization of the Tim-3 cytoplasmic domain to the immune synapse in a chimeric antigen receptor still enabled T cell activation. Together, our findings are consistent with a model whereby Tim-3 enhances TCR-proximal signaling under acute conditions.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Sinapses Imunológicas , Proteínas Proto-Oncogênicas c-akt , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Ativação Linfocitária , Sistema de Sinalização das MAP Quinases , Infecção Persistente , Proteínas Proto-Oncogênicas c-akt/genética
5.
Cancer Immunol Res ; 8(2): 167-178, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31831633

RESUMO

Patients with ulcerative colitis have an increased risk of developing colitis-associated colon cancer (CACC). Changes in glycosylation of the oncoprotein MUC1 commonly occur in chronic inflammation, including ulcerative colitis, and this abnormally glycosylated MUC1 promotes cancer development and progression. It is not known what causes changes in glycosylation of MUC1. Gene expression profiling of myeloid cells in inflamed and malignant colon tissues showed increased expression levels of inflammatory macrophage-associated cytokines compared with normal tissues. We analyzed the involvement of macrophage-associated cytokines in the induction of aberrant MUC1 glycoforms. A coculture system was used to examine the effects of M1 and M2 macrophages on glycosylation-related enzymes in colon cancer cells. M2-like macrophages induced the expression of the glycosyltransferase ST6GALNAC1, an enzyme that adds sialic acid to O-linked GalNAc residues, promoting the formation of tumor-associated sialyl-Tn (sTn) O-glycans. Immunostaining of ulcerative colitis and CACC tissue samples confirmed the elevated number of M2-like macrophages as well as high expression of ST6GALNAC1 and the altered MUC1-sTn glycoform on colon cells. Cytokine arrays and blocking antibody experiments indicated that the macrophage-dependent ST6GALNAC1 activation was mediated by IL13 and CCL17. We demonstrated that IL13 promoted phosphorylation of STAT6 to activate transcription of ST6GALNAC1. A computational model of signaling pathways was assembled and used to test IL13 inhibition as a possible therapy. Our findings revealed a novel cellular cross-talk between colon cells and macrophages within the inflamed and malignant colon that contributes to the pathogenesis of ulcerative colitis and CACC.See related Spotlight on p. 160.


Assuntos
Colite Ulcerativa/imunologia , Colite/complicações , Colo/imunologia , Neoplasias do Colo/imunologia , Glicopeptídeos/metabolismo , Células Mieloides/imunologia , Sialiltransferases/genética , Linhagem Celular Tumoral , Colite/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Biologia Computacional , Citocinas/genética , Citocinas/metabolismo , Glicosilação , Humanos , Inflamação/metabolismo , Interleucina-13/metabolismo , Ativação de Macrófagos/imunologia , Fator de Transcrição STAT6/metabolismo , Sialiltransferases/metabolismo , Transdução de Sinais
6.
Oncoimmunology ; 7(1): e1368604, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29296519

RESUMO

Chimeric antigen receptor T cells (CAR-Ts) are promising cancer therapeutics. However, since cancer cells can lose the CAR-targeted antigen and avoid destruction, targeting multiple antigens with multiple CARs has been proposed. We illustrate here a less cumbersome alternative, anti-tag CARs (AT-CARs) that bind to tags on tumor-targeting antibodies. We have created novel AT-CARs, using the affinity-enhanced monomeric streptavidin 2 (mSA2) biotin-binding domain that when expressed on T cells can target cancer cells coated with biotinylated antibodies. Human T cells expressing mSA2 CARs with CD28-CD3ζ and 4-1BB-CD3ζ signaling domains were activated by plate-immobilized biotin and by tumor cells coated with biotinylated antibodies against the tumor-associated antigens CD19 and CD20. Furthermore, mSA2 CAR T cells were capable of mediating cancer cell lysis and IFNγ production in an antibody dose-dependent manner. The mSA2 CAR is a universal AT-CAR that can be combined with biotinylated tumor-specific antibodies to potentially target many different tumor types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA