Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 3(1): 361-368, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457897

RESUMO

In this study, we developed a doping technology capable of improving the electrochemical performance, including the rate capability and cycling stability, of P2-type Na0.67Fe0.5Mn0.5O2 as a cathode material for sodium-ion batteries. Our approach involved using titanium as a doping element to partly substitute either Fe or Mn in Na0.67Fe0.5Mn0.5O2. The Ti-substituted Na0.67Fe0.5Mn0.5O2 shows superior electrochemical properties compared to the pristine sample. We investigated the changes in the crystal structure, surface chemistry, and particle morphology caused by Ti doping and correlated these changes to the improved performance. The enhanced rate capability and cycling stability were attributed to the enlargement of the NaO2 slab in the crystal structure because of Ti doping. This promoted Na-ion diffusion and prevented the phase transition from the P2 to the OP4/″Z″ structure.

2.
Inorg Chem ; 56(14): 7668-7678, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28648064

RESUMO

Magnesium batteries have received attention as a type of post-lithium-ion battery because of their potential advantages in cost and capacity. Among the host candidates for magnesium batteries, orthorhombic α-V2O5 is one of the most studied materials, and it shows a reversible magnesium intercalation with a high capacity especially in a wet organic electrolyte. Studies by several groups during the last two decades have demonstrated that water plays some important roles in getting higher capacity. Very recently, proton intercalation was evidenced mainly using nuclear resonance spectroscopy. Nonetheless, the chemical species inserted into the host structure during the reduction reaction are still unclear (i.e., Mg(H2O)n2+, Mg(solvent, H2O)n2+, H+, H3O+, H2O, or any combination of these). To characterize the intercalated phase, the crystal structure of the magnesium-inserted phase of α-V2O5, electrochemically reduced in 0.5 M Mg(ClO4)2 + 2.0 M H2O in acetonitrile, was solved for the first time by the ab initio method using powder synchrotron X-ray diffraction data. The structure was tripled along the b-axis from that of the pristine V2O5 structure. No appreciable densities of elements were observed other than vanadium and oxygen atoms in the electron density maps, suggesting that the inserted species have very low occupancies in the three large cavity sites of the structure. Examination of the interatomic distances around the cavity sites suggested that H2O, H3O+, or solvated magnesium ions are too big for the cavities, leading us to confirm that the intercalated species are single Mg2+ ions or protons. The general formula of magnesium-inserted V2O5 is Mg0.17HxV2O5, (0.66 ≤ x ≤ 1.16). Finally, density functional theory calculations were carried out to locate the most plausible atomic sites of the magnesium and protons, enabling us to complete the structure modeling. This work provides an explicit answer to the question about Mg intercalation into α-V2O5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...