Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771278

RESUMO

We report that polymerization makes a robust, practically applicable multifunctional optical device with a continuous wavelength tunable over 500 nm spectral range using UV-polymerizable cholesteric liquid crystals (CLCs). It can be used as a circular polarizer generating an extremely high degree of circularly polarized light with |g| = 1.85~2.00. It can also be used for optical notch filters, bandwidth-variable (from ~28 nm to ~93 nm) bandpass filters, mirrors, and intensity-variable beam splitters. Furthermore, this CLC device shows excellent stability owing to the polymerization of CLC cells. Its performance remains constant for a long time (~2 years) after a high-temperature exposure (170 °C for 1 h) and an extremely high laser beam intensity exposure (~143 W/cm2 of CW 532 nm diode laser and ~2.98 MW/cm2 of Nd: YAG pulse laser operation for two hours, respectively). The optical properties of polymerized CLC were theoretically analyzed by Berreman's 4 × 4 matrix method. The characteristics of this device were significantly improved by introducing an anti-reflection layer on the device. This wavelength-tunable and multifunctional device could dramatically increase optical research efficiency in various spectroscopic works. It could be applied to many instruments using visible and near-infrared wavelengths.

2.
Opt Express ; 25(14): 16409-16418, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789145

RESUMO

Functional polymer films are key components in the display industry, and the theoretical prediction of the optical properties of stretched polymer films is important. In this study, we try to establish the theoretical calculation process without an empirical database to predict the refractive index, including wavelength dispersions and optical retardation of stretched polymer films using several commercial simulation tools. The polarizability tensor and molecular volume for periodic units of polymers are accurately simulated, resulting in the accurate prediction of the mean refractive index and its dispersion for raw polymer materials. The birefringence of stretched films is also calculated to predict reasonably accurate optical properties of stretched films. The simulation method is an effective way that requires a relatively short time and low cost to develop new types of polymer films.

3.
Appl Opt ; 55(33): 9378-9383, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27869836

RESUMO

In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA