Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37892871

RESUMO

Early diagnosis of Alzheimer's disease (AD) is an important task that facilitates the development of treatment and prevention strategies, and may potentially improve patient outcomes. Neuroimaging has shown great promise, including the amyloid-PET, which measures the accumulation of amyloid plaques in the brain-a hallmark of AD. It is desirable to train end-to-end deep learning models to predict the progression of AD for individuals at early stages based on 3D amyloid-PET. However, commonly used models are trained in a fully supervised learning manner, and they are inevitably biased toward the given label information. To this end, we propose a selfsupervised contrastive learning method to accurately predict the conversion to AD for individuals with mild cognitive impairment (MCI) with 3D amyloid-PET. The proposed method, SMoCo, uses both labeled and unlabeled data to capture general semantic representations underlying the images. As the downstream task is given as classification of converters vs. non-converters, unlike the general self-supervised learning problem that aims to generate task-agnostic representations, SMoCo additionally utilizes the label information in the pre-training. To demonstrate the performance of our method, we conducted experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The results confirmed that the proposed method is capable of providing appropriate data representations, resulting in accurate classification. SMoCo showed the best classification performance over the existing methods, with AUROC = 85.17%, accuracy = 81.09%, sensitivity = 77.39%, and specificity = 82.17%. While SSL has demonstrated great success in other application domains of computer vision, this study provided the initial investigation of using a proposed self-supervised contrastive learning model, SMoCo, to effectively predict MCI conversion to AD based on 3D amyloid-PET.

2.
medRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662267

RESUMO

Early detection of Alzheimer's Disease (AD) is crucial to ensure timely interventions and optimize treatment outcomes for patients. While integrating multi-modal neuroimages, such as MRI and PET, has shown great promise, limited research has been done to effectively handle incomplete multi-modal image datasets in the integration. To this end, we propose a deep learning-based framework that employs Mutual Knowledge Distillation (MKD) to jointly model different sub-cohorts based on their respective available image modalities. In MKD, the model with more modalities (e.g., MRI and PET) is considered a teacher while the model with fewer modalities (e.g., only MRI) is considered a student. Our proposed MKD framework includes three key components: First, we design a teacher model that is student-oriented, namely the Student-oriented Multi-modal Teacher (SMT), through multi-modal information disentanglement. Second, we train the student model by not only minimizing its classification errors but also learning from the SMT teacher. Third, we update the teacher model by transfer learning from the student's feature extractor because the student model is trained with more samples. Evaluations on Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets highlight the effectiveness of our method. Our work demonstrates the potential of using AI for addressing the challenges of incomplete multi-modal neuroimage datasets, opening new avenues for advancing early AD detection and treatment strategies.

3.
medRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162842

RESUMO

Early diagnosis of Alzheimer's disease (AD) is an important task that facilitates the development of treatment and prevention strategies and may potentially improve patient outcomes. Neuroimaging has shown great promise, including the amyloid-PET which measures the accumulation of amyloid plaques in the brain - a hallmark of AD. It is desirable to train end-to-end deep learning models to predict the progression of AD for individuals at early stages based on 3D amyloid-PET. However, commonly used models are trained in a fully supervised learning manner and they are inevitably biased toward the given label information. To this end, we propose a self-supervised contrastive learning method to predict AD progression with 3D amyloid-PET. It uses unlabeled data to capture general representations underlying the images. As the downstream task is given as classification, unlike the general self-supervised learning problem that aims to generate task-agnostic representations, we also propose a loss function to utilize the label information in the pre-training. To demonstrate the performance of our method, we conducted experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The results confirmed that the proposed method is capable of providing appropriate data representations, resulting in accurate classification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA