Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 22: 101348, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623504

RESUMO

This study aimed to examine the impacts of essential and optional ingredients on the microbial and metabolic profiles of kimchi during 100 days of fermentation, using a mix-omics approach. Kimchi manufactured without essential ingredients (e.g., red pepper, garlic, ginger, green onion, and radish) had lower lactic acid content. The absence of garlic was associated with a higher proportion of Latilactobacillus and Lactococcus, while the absence of red pepper was associated with a greater proportion of Leuconostoc than the control group. In addition, red pepper and garlic served as primary determinants of the levels of organic acids and biogenic amines. Sugar was positively correlated with the levels of melibiose, and anchovy sauce was positively correlated with the levels of amino acids such as methionine, leucine, and glycine. These findings contribute to a fundamental understanding of how ingredients influence kimchi fermentation, offering valuable insights for optimizing kimchi production to meet various preferences.

2.
Biotechnol Biofuels Bioprod ; 15(1): 104, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209178

RESUMO

BACKGROUND: Terpenes are one of the most diverse and abundant classes of natural biomolecules, collectively enabling a variety of therapeutic, energy, and cosmetic applications. Recent genomics investigations have predicted a large untapped reservoir of bacterial terpene synthases residing in the genomes of uncultivated organisms living in the soil, indicating a vast array of putative terpenoids waiting to be discovered. RESULTS: We aimed to develop a high-throughput functional metagenomic screening system for identifying novel terpene synthases from bacterial metagenomes by relieving the toxicity of terpene biosynthesis precursors to the Escherichia coli host. The precursor toxicity was achieved using an inducible operon encoding the prenyl pyrophosphate synthetic pathway and supplementation of the mevalonate precursor. Host strain and screening procedures were finely optimized to minimize false positives arising from spontaneous mutations, which avoid the precursor toxicity. Our functional metagenomic screening of human fecal metagenomes yielded a novel ß-farnesene synthase, which does not show amino acid sequence similarity to known ß-farnesene synthases. Engineered S. cerevisiae expressing the screened ß-farnesene synthase produced 120 mg/L ß-farnesene from glucose (2.86 mg/g glucose) with a productivity of 0.721 g/L∙h. CONCLUSIONS: A unique functional metagenomic screening procedure was established for screening terpene synthases from metagenomic libraries. This research proves the potential of functional metagenomics as a sequence-independent avenue for isolating targeted enzymes from uncultivated organisms in various environmental habitats.

3.
Biomaterials ; 282: 121379, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35078005

RESUMO

Saccharomyces boulardii is a yeast clinically used for treating various symptoms of gastrointestinal dysbiosis. Despite their genomic relatedness, S. boulardii has a distinctive cell wall oligosaccharide composition compared to baker's yeast S. cerevisiae, such as higher mannan content. Here we explore the beneficial effects of S. boulardii cell wall oligosaccharides through metabolic engineering. We increased the production of guanosine diphosphate (GDP)-mannose, the substrate for cell wall mannan biosynthesis, by perturbing glycolysis flux and overexpressing the enzymes in the GDP-mannose biosynthesis pathway. Combined with overexpression of a cell wall mannoprotein and dolichol phosphate mannose synthase, the cell wall mannan content of S. boulardii increased up to 52%. The identical engineering resulted in marginal changes in the S. cerevisiae cell wall. S. boulardii showed a higher adhesive capacity against Salmonella enterica Typhimurium than S. cerevisiae, and yeast-bacteria sedimentation rates were positively correlated with cell wall mannan contents. Besides, S. boulardii biomass selectively proliferated Bacteroides thetaiotaomicron over Clostridioides difficile more efficiently than S. cerevisiae, and the selectivity was further enhanced by amplifying the cell wall mannan. Collectively, we report the important prebiotic roles of cell wall oligosaccharides in the protective functions of S. boulardii and present a unique metabolic engineering approach to modulate the functions.


Assuntos
Probióticos , Saccharomyces cerevisiae , Parede Celular/metabolismo , Mananas/metabolismo , Manose/metabolismo , Engenharia Metabólica , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Prebióticos
4.
ACS Synth Biol ; 11(1): 508-514, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34939781

RESUMO

Precise transcriptional modulation is a key requirement for developing synthetic probiotics with predictably tunable functionalities. In this study, an expandable and tunable transactivation system was constructed and validated in probiotic yeast Saccharomyces boulardii. The use of nuclease-null Cas9 and scaffold RNA (scRNA) directed regulation enabled transactivation under the control of a synthetic promoter in S. boulardii. A synthetic promoter consisting of the scRNA target sequence and the core GAL7 promoter region restricted interference from the native galactose regulon. The system was readily expanded by introducing new target sequences to the promoter and scRNA. Complementarity between the promoter and scRNA, and binding specificity between scRNA and transcriptional activator, served as two layers of orthogonality of the transactivation. In addition, activator expression under the control of an inducible promoter enabled control of the transactivation via chemical inducer. The described system has the potential to enable engineering of probiotic yeast to more precisely perform therapeutic functions.


Assuntos
Probióticos , Saccharomyces boulardii , Regiões Promotoras Genéticas/genética , Saccharomyces boulardii/genética , Saccharomyces boulardii/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional/genética
5.
J Biotechnol ; 340: 30-38, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450187

RESUMO

2'-Fucosyllactose (2'-FL), a major oligosaccharide of human breast milk, and is currently supplemented into infant formula. For the overproduction of 2'-FL via fucosylation of lactose, conventional approaches have focused on the episomal overexpression of de novo or salvage GDP-L-fucose biosynthetic pathway and α-1,2-fucosyltransferase (FucT2) through T7 RNA polymerase expression system in engineered E. coli. However, these approaches have drawbacks of metabolic burden, plasmid instability, and inclusion body formation. In this study, a deletion mutant of waaF coding for ADP-heptose:LPS heptosyltransferase II was employed for 2'-FL production. As the waaF deletion induces accumulation of colanic acid, additional deletion of wcaJ coding for UDP-glucose-1-phosphate transferase in the waaF deletion mutant resulted in enhanced accumulation of GDP-L-fucose. Besides, 2'-FL yields and titers were drastically improved when T7 promoter was replaced with Trc promoter for α-1,2 fucosyltransferase expressions in the waaF and wcaJ deleted strain. As a result, when FucT2 was expressed under Trc promoter in the E. coli JM109(DE3) ΔwaaFΔwcaJ, 14.7 g/L of 2'-FL was produced with a productivity of 0.31 g/L/h in a fed-batch fermentation. We envision that the deletion-based metabolic design and decreased promoter strength for fucosyltransferase expression can resolve the drawbacks of T7 RNA polymerase-based expression design for 2'-FL production in E. coli.


Assuntos
Escherichia coli , Fucosiltransferases , Trissacarídeos/biossíntese , Escherichia coli/genética , Fucosiltransferases/genética , Guanosina Difosfato Fucose , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
6.
Appl Environ Microbiol ; 87(17): e0048121, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34132586

RESUMO

Squalene is a triterpenoid serving as an ingredient of various products in the food, cosmetic, pharmaceutical industries. The oleaginous yeast Yarrowia lipolytica offers enormous potential as a microbial chassis for the production of terpenoids, such as carotenoid, limonene, linalool, and farnesene, as the yeast provides ample storage space for hydrophobic products. Here, we present a metabolic design that allows the enhanced accumulation of squalene in Y. lipolytica. First, we improved squalene accumulation in Y. lipolytica by overexpressing the genes (ERG and HMG) coding for the mevalonate pathway enzymes. Second, we increased the production of lipid where squalene is accumulated by overexpressing DGA1 (encoding diacylglycerol acyltransferase) and deleting PEX10 (for peroxisomal membrane E3 ubiquitin ligase). Third, we deleted URE2 (coding for a transcriptional regulator in charge of nitrogen catabolite repression [NCR]) to induce lipid accumulation regardless of the carbon-to-nitrogen ratio in culture media. The resulting engineered Y. lipolytica exhibited a 115-fold higher squalene content (22.0 mg/g dry cell weight) than the parental strain. These results suggest that the biological function of Ure2p in Y. lipolytica is similar to that in Saccharomyces cerevisiae, and its deletion can be utilized to enhance the production of hydrophobic target products in oleaginous yeast strains. IMPORTANCE This study demonstrated a novel strategy for increasing squalene production in Y. lipolytica. URE2, a bifunctional protein that is involved in both nitrogen catabolite repression and oxidative stress response, was identified and demonstrated correlation to squalene production. The data suggest that double deletion of PEX10 and URE2 can serve as a positive synergistic effect to help yeast cells in boosting squalene production. This discovery can be combined with other strategies to engineer cell factories to efficiently produce terpenoid in the future.


Assuntos
Proteínas de Bactérias/genética , Esqualeno/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Proteínas de Bactérias/metabolismo , Deleção de Genes , Engenharia Metabólica , Fatores de Transcrição/metabolismo , Yarrowia/enzimologia
7.
Metab Eng ; 62: 322-329, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33098975

RESUMO

2'-Fucosyllactose (2'-FL), a human milk oligosaccharide with confirmed benefits for infant health, is a promising infant formula ingredient. Although Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Bacillus subtilis have been engineered to produce 2'-FL, their titers and productivities need be improved for economic production. Glucose along with lactose have been used as substrates for producing 2'-FL, but accumulation of by-products due to overflow metabolism of glucose hampered efficient production of 2'-FL regardless of a host strain. To circumvent this problem, we used xylose, which is the second most abundant sugar in plant cell wall hydrolysates and is metabolized through oxidative metabolism, for the production of 2'-FL by engineered yeast. Specifically, we modified an engineered S. cerevisiae strain capable of assimilating xylose to produce 2'-FL from a mixture of xylose and lactose. First, a lactose transporter (Lac12) from Kluyveromyces lactis was introduced. Second, a heterologous 2'-FL biosynthetic pathway consisting of enzymes Gmd, WcaG, and WbgL from Escherichia coli was introduced. Third, we adjusted expression levels of the heterologous genes to maximize 2'-FL production. The resulting engineered yeast produced 25.5 g/L of 2'-FL with a volumetric productivity of 0.35 g/L∙h in a fed-batch fermentation with lactose and xylose feeding to mitigate the glucose repression. Interestingly, the major location of produced 2'-FL by the engineered yeast can be changed using different culture media. While 72% of the produced 2'-FL was secreted when a complex medium was used, 82% of the produced 2'-FL remained inside the cells when a minimal medium was used. As yeast extract is already used as food and animal feed ingredients, 2'-FL enriched yeast extract can be produced cost-effectively using the 2'-FL-accumulating yeast cells.


Assuntos
Saccharomyces cerevisiae , Xilose , Fermentação , Humanos , Kluyveromyces , Saccharomyces cerevisiae/genética , Trissacarídeos
8.
Microbiome ; 8(1): 125, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32862830

RESUMO

BACKGROUND: Intestinal microbiota restoration can be achieved by complementing a subject's perturbed microbiota with that of a healthy donor. Recurrent Clostridioides difficile infection (rCDI) is one key application of such treatment. Another emerging application of interest is reducing antibiotic-resistant genes (ARGs) and organisms (AROs). In this study, we investigated fecal specimens from a multicenter, randomized, double-blind, placebo-controlled phase 2b study of microbiota-based investigational drug RBX2660. Patients were administered either placebo, 1 dose of RBX2660 and 1 placebo, or 2 doses of RBX2660 via enema and longitudinally tracked for changes in their microbiome and antibiotic resistome. RESULTS: All patients exhibited significant recovery of gut microbiome diversity and a decrease of ARG relative abundance during the first 7 days post-treatment. However, the microbiome and resistome shifts toward average configurations from unperturbed individuals were more significant and longer-lasting in RBX2660 recipients compared to placebo. We quantified microbiome and resistome modification by RBX2660 using a novel "transplantation index" metric. We identified taxonomic and metabolic features distinguishing the baseline microbiome of non-transplanted patients and taxa specifically enriched during the process of transplantation. We elucidated the correlation between resistome and taxonomic transplantations and post-treatment dynamics of patient-specific and RBX2660-specific ARGs. Whole genome sequencing of AROs cultured from RBX2660 product and patient samples indicate ARO eradication in patients via RBX2660 administration, but also, to a lesser extent, introduction of RBX2660-derived AROs. CONCLUSIONS: Through shotgun metagenomic sequencing, we elucidated the effects of RBX2660 in the microbiome and resistome. Antibiotic discontinuation alone resulted in significant recovery of gut microbial diversity and reduced ARG relative abundance, but RBX2660 administration more rapidly and completely changed the composition of patients' microbiome, resistome, and ARO colonization by transplanting RBX2660 microbiota into the recipients. Although ARGs and AROs were transmitted through RBX2660, the resistome post-RBX2660 more closely resembled that of the administered product-a proxy for the donor-than an antibiotic perturbed state. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02299570 . Registered 19 November 2014 Video Abstract.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/genética , Microbiota , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Appl Microbiol Biotechnol ; 104(8): 3245-3252, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076775

RESUMO

With growing interest in alternative fuels to minimize carbon and particle emissions, research continues on the production of lignocellulosic ethanol and on the development of suitable yeast strains. However, great diversities and continued technical advances in pretreatment methods for lignocellulosic biomass complicate the evaluation of developed yeast strains, and strain development often lags industrial applicability. In this review, recent studies demonstrating developed yeast strains with lignocellulosic biomass hydrolysates are compared. For the pretreatment methods, we highlight hydrothermal pretreatments (dilute acid treatment and autohydrolysis), which are the most commonly used and effective methods for lignocellulosic biomass pretreatment. Rather than pretreatment conditions, the type of biomass most strongly influences the composition of the hydrolysates. Metabolic engineering strategies for yeast strain development, the choice of xylose-metabolic pathway, adaptive evolution, and strain background are highlighted as important factors affecting ethanol yield and productivity from lignocellulosic biomass hydrolysates. A comparison of the parameters from recent studies demonstrating lignocellulosic ethanol production provides useful information for future strain development.


Assuntos
Biomassa , Etanol/metabolismo , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Fermentação , Hidrólise , Engenharia Metabólica/métodos , Redes e Vias Metabólicas
10.
Biotechnol J ; 15(2): e1900173, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31466140

RESUMO

Sufficient supply of reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a prerequisite of the overproduction of isoprenoids and related bioproducts in Saccharomyces cerevisiae. Although S. cerevisiae highly depends on the oxidative pentose phosphate (PP) pathway to produce NADPH, its metabolic flux toward the oxidative PP pathway is limited due to the rigid glycolysis flux. To maximize NADPH supply for the isoprenoid production in yeast, upper glycolytic metabolic fluxes are reduced by introducing mutations into phosphofructokinase (PFK) along with overexpression of ZWF1 encoding glucose-6-phosphate (G6P) dehydrogenase. The PFK mutations (Pfk1 S724D and Pfk2 S718D) result in less glycerol production and more accumulation of G6P, which is a gateway metabolite toward the oxidative PP pathway. When combined with the PFK mutations, overexpression of ZWF1 caused substantial increases of [NADPH]/[NADP+ ] ratios whereas the effect of ZWF1 overexpression alone in the wild-type strain is not noticeable. Also, the introduction of ZWF1 overexpression and the PFK mutations into engineered yeast overexpressing acetyl-CoA C-acetyltransferase (ERG10), truncated HMG-CoA reductase isozyme 1 (tHMG1), and amorphadiene synthase (ADS) leads to a titer of 497 mg L-1 of amorphadiene (3.7-fold over the parental strain). These results suggest that perturbation of upper glycolytic fluxes, in addition to ZWF1 overexpression, is necessary for efficient NADPH supply through the oxidative PP pathway and enhanced production of isoprenoids by engineered S. cerevisiae.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Glucosefosfato Desidrogenase/genética , Glicólise , NADP/metabolismo , Via de Pentose Fosfato , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
3 Biotech ; 9(10): 367, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31588391

RESUMO

In a previously engineered Saccharomyces cerevisiae recombinant, the cellobiose fermentation rate was significantly lower than the glucose fermentation rate. Thus, we implemented a genome-wide perturbation library to find gene targets for improving the cellobiose fermentation capability of the yeast strain. Unexpectedly, we discovered a transformant that contained an additional ß-glucosidase gene (gh1-1), possibly through homologous recombination between the plasmids. The additional ß-glucosidase led to the fastest cellobiose fermentation activity among all the transformants evaluated, and the strain demonstrated significantly higher ß-glucosidase activity than the control strain, especially during the initial exponential growth phase. The present work revealed the benefit of the extra gh1-1 copy for efficient cellobiose fermentation in the engineered S. cerevisiae strain.

12.
ACS Synth Biol ; 8(9): 2131-2140, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31374167

RESUMO

Vitamin A is an essential human micronutrient and plays critical roles in vision, reproduction, immune system, and skin health. Current industrial methods for the production of vitamin A rely on chemical synthesis from petroleum-derived substrates, such as acetone and acetylene. Here, we developed a biotechnological method for production of vitamin A from an abundant and nonedible sugar. Specifically, we engineered Saccharomyces cerevisiae to produce vitamin A from xylose-the second most abundant sugar in plant cell wall hydrolysates-by introducing a ß-carotene biosynthetic pathway, and a gene coding for ß-carotene 15,15'-dioxygenase (BCMO) into a xylose-fermenting S. cerevisiae. The resulting yeast strain produced vitamin A from xylose at a titer 4-fold higher than from glucose. When a two-phase in situ extraction strategy with dodecane or olive oil as an extractive agent was employed, vitamin A production improved additional 2-fold. Furthermore, a xylose fed-batch fermentation with dodecane in situ extraction achieved a final titer of 3350 mg/L vitamin A, which consisted of retinal (2094 mg/L) and retinol (1256 mg/L). These results suggest that potential limiting factors of vitamin A production in yeast, such as insufficient supply of isoprenoid precursors, and limited intracellular storage capacity, can be effectively addressed by using xylose as a carbon source, and two-phase in situ extraction. The engineered S. cerevisiae and fermentation strategies described in this study might contribute to sustainable and economic production of vitamin A, and vitamin A-enriched bioproducts from renewable biomass.


Assuntos
Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Vitamina A/metabolismo , Xilose/metabolismo , Oxirredutases do Álcool/genética , Técnicas de Cultura Celular por Lotes , Proteínas Fúngicas/genética , Glucose/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/genética
13.
Nat Commun ; 10(1): 1356, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902987

RESUMO

Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.


Assuntos
Biotransformação , Saccharomyces cerevisiae/metabolismo , Aldeído Redutase/metabolismo , Reatores Biológicos/microbiologia , Galactose/metabolismo , Dosagem de Genes , Hexoses/metabolismo , Espaço Intracelular/metabolismo , Isomerismo , Lactose/metabolismo , Modelos Biológicos , Oxirredução , Oxirredutases/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Termodinâmica , Xilose/metabolismo
14.
ACS Synth Biol ; 8(2): 415-424, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668900

RESUMO

Fucosyl-oligosaccharides (FOSs) play physiologically important roles as prebiotics, neuronal growth factors, and inhibitors of enteropathogens. However, challenges in designed synthesis and mass production of FOSs hamper their industrial applications. Here, we report flexible biosynthetic routes to produce various FOSs, including unnatural ones, through in vitro enzymatic reactions of various sugar acceptors, such as glucose, cellobiose, and agarobiose, and GDP-l-fucose as the fucose donor by using α1,2-fucosyltransferase (FucT2). Also, the whole-cell conversion for fucosylation of various sugar acceptors by overexpressing the genes associated with GDP-l-fucose production and fucT2 gene in Escherichia coli was demonstrated by producing 17.74 g/L of 2'-fucosylgalactose (2'-FG). Prebiotic effects of 2'-FG were verified on the basis of selective fermentability of 2'-FG by probiotic bifidobacteria. These biosynthetic routes can be used to engineer industrial microorganisms for more economical, more flexible, and safer production of FOSs than chemical synthesis of FOSs.


Assuntos
Escherichia coli/metabolismo , Oligossacarídeos/metabolismo , Prebióticos , Trissacarídeos/metabolismo
15.
J Biotechnol ; 292: 1-4, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30615911

RESUMO

Mixed sugars derived from lignocellulosic biomass can be converted into biofuels and chemicals by engineered microorganisms, but toxic fermentation inhibitors produced from harsh depolymerization processes of lignocellulosic biomass pose a critical challenge for economic production of biofuels and chemicals. Unlike other fermentation inhibitors generated from sugar degradation, acetic acid is inevitably produced from acetylated hemicellulose, and its concentrations in cellulosic hydrolysates are substantially higher than other fermentation inhibitors. The aim of this study was to identify novel genetic perturbations for improved acetic acid tolerance in Saccharomyces cerevisiae. Through a genomic library-based approach, we identified an overexpression gene target RCK1 coding for a protein kinase involved in oxidative stress. Overexpression of RCK1 significantly improved glucose and xylose fermentation under acetic acid stress conditions. Specifically, the RCK1-overexpressing strain exhibited a two-fold higher specific ethanol productivity than the control strain in glucose fermentation under the presence of acetic acid. Interestingly, the engineered S. cerevisiae overexpressing RCK1 showed 40% lower intracellular reactive oxygen species (ROS) levels as compared to the parental strain when the strains were exposed to acetic acid, suggesting that RCK1 overexpression might play a role in reducing the oxidative stress caused by acetic acid.


Assuntos
Ácido Acético/toxicidade , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Fermentação/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
16.
Biotechnol Adv ; 37(2): 271-283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30553928

RESUMO

Numerous metabolic engineering strategies have allowed yeasts to efficiently assimilate xylose, the second most abundant sugar component of lignocellulosic biomass. During the investigation of xylose utilization by yeasts, a global rewiring of metabolic networks upon xylose cultivation has been captured, as opposed to a pattern of glucose repression. A clear understanding of the xylose-induced metabolic reprogramming in yeast would shed light on the optimization of yeast-based bioprocesses to produce biofuels and chemicals using xylose. In this review, we delved into the characteristics of yeast xylose metabolism, and potential benefits of using xylose as a carbon source to produce various biochemicals with examples. Transcriptomic and metabolomic patterns of xylose-grown yeast cells were distinct from those on glucose-a conventional sugar of industrial biotechnology-and the gap might lead to opportunities to produce biochemicals efficiently. Indeed, limited glycolytic metabolic fluxes during xylose utilization could result in enhanced production of metabolites whose biosynthetic pathways compete for precursors with ethanol fermentation. Also, alleviation of glucose repression on cytosolic acetyl coenzyme A (acetyl-CoA) synthesis, and respiratory energy metabolism during xylose utilization enhanced production of acetyl-CoA derivatives. Consideration of singular properties of xylose metabolism, such as redox cofactor imbalance between xylose reductase and xylitol dehydrogenase, is necessary to maximize these positive xylose effects. This review argues the importance and benefits of xylose utilization as not only a way of expanding a substrate range, but also an effective environmental perturbation for the efficient production of advanced biofuels and chemicals in yeasts.


Assuntos
Biocombustíveis/microbiologia , Vias Biossintéticas/genética , Engenharia Metabólica/tendências , Xilose/metabolismo , Acetilcoenzima A/metabolismo , Aldeído Redutase/química , Fermentação , Glucose/metabolismo , Metabolômica/tendências , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma/genética , Xilose/química
17.
ACS Synth Biol ; 7(11): 2529-2536, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30350568

RESUMO

2'-fucosyllactose (2-FL), one of the most abundant human milk oligosaccharides (HMOs), has received much attention due to its health-promoting activities, such as stimulating the growth of beneficial gut microorganisms, inhibiting pathogen infection, and enhancing the host immune system. Consequently, large quantities of 2-FL are on demand for food applications as well as in-depth investigation of its biological properties. Biosynthesis of 2-FL has been attempted primarily in Escherichia coli, which might not be the best option to produce food and cosmetic ingredients due to the presence of endotoxins on the cell surface. In this study, an alternative route to produce 2-FL via a de novo pathway using a food-grade microorganism,  Saccharomyces cerevisiae, has been devised. Specifically, heterologous genes, which are necessary to achieve the production of 2-FL from a mixture of glucose and lactose, were introduced into S. cerevisiae. When the lactose transporter (Lac12), de novo GDP-l-fucose pathway (consisting of GDP-d-mannose-4,6-dehydratase (Gmd) and GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase (WcaG)), and α1,2-fucosyltransferase (FucT2) were introduced, the resulting engineered strain (D452L-gwf) produced 0.51 g/L of 2-FL from a batch fermentation. In addition, 0.41 g/L of l-fucose was produced when α-l-fucosidase was additionally expressed in the 2-FL producing strain (D452L-gwf). To our knowledge, this is the first report of 2-FL and l-fucose production in engineered S. cerevisiae via the de novo pathway. This study provides the possibility of producing HMOs by a food-grade microorganism S. cerevisiae and paves the way for more HMO production in the future.


Assuntos
Fucose/biossíntese , Engenharia Genética , Leite Humano/metabolismo , Saccharomyces cerevisiae/genética , Trissacarídeos/biossíntese , Técnicas de Cultura Celular por Lotes , Carboidratos Epimerases/genética , Fucosiltransferases/genética , Humanos , Hidroliases/genética , Lactose/metabolismo , Saccharomyces cerevisiae/metabolismo
18.
Microb Cell Fact ; 17(1): 101, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950173

RESUMO

BACKGROUND: 2'-Fucosyllactose (2-FL), one of the most abundant oligosaccharides in human milk, has potential applications in foods due to its health benefits such as the selective promotion of bifidobacterial growth and the inhibition of pathogenic microbial binding to the human gut. Owing to the limited amounts of 2-FL in human milk, alternative microbial production of 2-FL is considered promising. To date, microbial production of 2-FL has been studied mostly in Escherichia coli. In this study, 2-FL was produced alternatively by using a yeast Saccharomyces cerevisiae, which may have advantages over E. coli. RESULTS: Fucose and lactose were used as the substrates for the salvage pathway which was constructed with fkp coding for a bifunctional enzyme exhibiting L-fucokinase and guanosine 5'-diphosphate-L-fucose phosphorylase activities, fucT2 coding for α-1,2-fucosyltransferase, and LAC12 coding for lactose permease. Production of 2-FL by the resulting engineered yeast was verified by mass spectrometry. 2-FL titers of 92 and 503 mg/L were achieved from 48-h batch fermentation and 120-h fed-batch fermentation fed with ethanol as a carbon source, respectively. CONCLUSIONS: This is the first report on 2-FL production by using yeast S. cerevisiae. These results suggest that S. cerevisiae can be considered as a host engineered for producing 2-FL via the salvage pathway.


Assuntos
Engenharia Metabólica , Leite Humano/química , Oligossacarídeos/biossíntese , Saccharomyces cerevisiae/metabolismo , Trissacarídeos/biossíntese , Técnicas de Cultura Celular por Lotes , Fermentação , Fucose/metabolismo , Fucosiltransferases/metabolismo , Humanos , Lactose/metabolismo , Espectrometria de Massas , Fosforilases/metabolismo , Saccharomyces cerevisiae/genética , Galactosídeo 2-alfa-L-Fucosiltransferase
19.
Biotechnol Biofuels ; 11: 140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785207

RESUMO

BACKGROUND: Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae. Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. RESULTS: Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of ß-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. CONCLUSIONS: The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.

20.
Biotechnol Bioeng ; 115(7): 1793-1800, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29573412

RESUMO

Squalene, a valuable acyclic triterpene, can be used as a chemical commodity for pharmacology, flavor, and biofuel industries. Microbial production of squalene has been of great interest due to its limited availability, and increasing prices extracted from animal and plant tissues. Here we report genetic perturbations that synergistically improve squalene production in Saccharomyces cerevisiae. As reported previously, overexpression of a truncated HMG-CoA reductase 1 (tHMG1) led to the accumulation 20-fold higher squalene than a parental strain. In order to further increase squalene accumulation in the tHMG1 overexpressing yeast, we introduced genetic perturbations-known to increase lipid contents in yeast-to enhance squalene accumulation as lipid body is a potential storage of squalene. Specifically, DGA1 coding for diacylglycerol acyltranferase was overexpressed to enhance lipid biosynthesis, and POX1 and PXA2 coding for acyl-CoA oxidase and a subunit of peroxisomal ABC transporter were deleted to reduce lipid ß-oxidation. Simultaneous overexpression of tHMG1 and DGA1 coding for rate-limiting enzymes in the mevalonate and lipid biosynthesis pathways led to over 250-fold higher squalene accumulation than a control strain. However, deletion of POX1 and PXA2 in the tHMG1 overexpressing yeast did not improve squalene accumulation additionally. Fed-batch fermentation of the tHMG1 and DGA1 co-overexpressing yeast strain resulted in the production of squalene at a titer of 445.6 mg/L in a nitrogen-limited minimal medium. This report demonstrates that increasing storage capacity for hydrophobic compounds can enhance squalene production, suggesting that increasing lipid content is an effective strategy to overproduce a hydrophobic molecule in yeast.


Assuntos
Metabolismo dos Lipídeos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Expressão Gênica , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...