Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nat Commun ; 15(1): 7812, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242612

RESUMO

Streptococcus mitis is a leading cause of infective endocarditis (IE). However, our understanding of the genomic epidemiology and pathogenicity of IE-associated S. mitis is hampered by low IE incidence. Here we use whole genome sequencing of 129 S. mitis bloodstream infection (BSI) isolates collected between 2001-2016 from clinically diagnosed IE cases in the UK to investigate genetic diversity, antimicrobial resistance, and pathogenicity. We show high genetic diversity of IE-associated S. mitis with virtually all isolates belonging to distinct lineages indicating no predominance of specific lineages. Additionally, we find a highly variable distribution of known pneumococcal virulence genes among the isolates, some of which are overrepresented in disease when compared to carriage strains. Our findings suggest that S. mitis in patients with clinically diagnosed IE is not primarily caused by specific hypervirulent or antimicrobial resistant lineages, highlighting the accidental pathogenic nature of S. mitis in patients with clinically diagnosed IE.


Assuntos
Bacteriemia , Infecções Estreptocócicas , Streptococcus mitis , Humanos , Streptococcus mitis/genética , Streptococcus mitis/isolamento & purificação , Reino Unido/epidemiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/epidemiologia , Irlanda/epidemiologia , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Endocardite/microbiologia , Endocardite/epidemiologia , Genoma Bacteriano/genética , Sequenciamento Completo do Genoma , Masculino , Feminino , Variação Genética , Genômica , Idoso , Filogenia , Pessoa de Meia-Idade , Farmacorresistência Bacteriana/genética , Endocardite Bacteriana/microbiologia , Endocardite Bacteriana/epidemiologia , Adulto , Fatores de Virulência/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Virulência/genética
2.
PLoS Genet ; 20(6): e1011317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843312

RESUMO

Evaluation of the apportionment of genetic diversity of human bacterial commensals within and between human populations is an important step in the characterization of their evolutionary potential. Recent studies showed a correlation between the genomic diversity of human commensal strains and that of their host, but the strength of this correlation and of the geographic structure among human populations is a matter of debate. Here, we studied the genomic diversity and evolution of the phylogenetically related oro-nasopharyngeal healthy-carriage Streptococcus mitis and Streptococcus pneumoniae, whose lifestyles range from stricter commensalism to high pathogenic potential. A total of 119 S. mitis genomes showed higher within- and among-host variation than 810 S. pneumoniae genomes in European, East Asian and African populations. Summary statistics of the site-frequency spectrum for synonymous and non-synonymous variation and ABC modelling showed this difference to be due to higher ancestral bacterial population effective size (Ne) in S. mitis, whose genomic variation has been maintained close to mutation-drift equilibrium across (at least many) generations, whereas S. pneumoniae has been expanding from a smaller ancestral bacterial population. Strikingly, both species show limited differentiation among human populations. As genetic differentiation is inversely proportional to the product of effective population size and migration rate (Nem), we argue that large Ne have led to similar differentiation patterns, even if m is very low for S. mitis. We conclude that more diversity within than among human populations and limited population differentiation must be common features of the human microbiome due to large Ne.


Assuntos
Evolução Molecular , Variação Genética , Genoma Bacteriano , Streptococcus mitis , Streptococcus pneumoniae , Streptococcus mitis/genética , Humanos , Streptococcus pneumoniae/genética , Filogenia , Genética Populacional
3.
Microb Genom ; 10(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896467

RESUMO

Since the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Malawi in 2011, there has been persistent carriage of vaccine serotype (VT) Streptococcus pneumoniae, despite high vaccine coverage. To determine if there has been a genetic change within the VT capsule polysaccharide (cps) loci since the vaccine's introduction, we compared 1022 whole-genome-sequenced VT isolates from 1998 to 2019. We identified the clonal expansion of a multidrug-resistant, penicillin non-susceptible serotype 23F GPSC14-ST2059 lineage, a serotype 14 GPSC9-ST782 lineage and a novel serotype 14 sequence type GPSC9-ST18728 lineage. Serotype 23F GPSC14-ST2059 had an I253T mutation within the capsule oligosaccharide repeat unit polymerase Wzy protein, which is predicted in silico to alter the protein pocket cavity. Moreover, serotype 23F GPSC14-ST2059 had SNPs in the DNA binding sites for the cps transcriptional repressors CspR and SpxR. Serotype 14 GPSC9-ST782 harbours a non-truncated version of the large repetitive protein (Lrp), containing a Cna protein B-type domain which is also present in proteins associated with infection and colonisation. These emergent lineages also harboured genes associated with antibiotic resistance, and the promotion of colonisation and infection which were absent in other lineages of the same serotype. Together these data suggest that in addition to serotype replacement, modifications of the capsule locus associated with changes in virulence factor expression and antibiotic resistance may promote vaccine escape. In summary, the study highlights that the persistence of vaccine serotype carriage despite high vaccine coverage in Malawi may be partly caused by expansion of VT lineages post-PCV13 rollout.


Assuntos
Cápsulas Bacterianas , Infecções Pneumocócicas , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/patogenicidade , Vacinas Pneumocócicas/imunologia , Humanos , Malaui , Cápsulas Bacterianas/genética , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Conjugadas , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/imunologia , Virulência/genética , Genótipo , Sequenciamento Completo do Genoma , Proteínas de Bactérias/genética , Fatores de Virulência/genética , Pré-Escolar , Polimorfismo de Nucleotídeo Único , Lactente , Masculino
5.
Trop Med Infect Dis ; 8(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37624351

RESUMO

(1) Background: Laboratories supporting the invasive bacteria preventable disease (IB-VPD) network are expected to demonstrate the capacity to identify the main etiological agents of pediatric bacterial meningitis (PBM) (Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae) on Gram stains and in phenotypic identification. Individual reports of sentinel site (SSL), national (NL) and regional reference (RRL) laboratories participating in the World Health Organization (WHO)-coordinated external quality assessment, distributed by the United Kingdom National External Quality Assessment (EQA) Services (UK NEQAS) for Microbiology between 2014 and 2019 were analyzed. (2) Methods: The panels consisted of (1) unstained bacterial smears for Gram staining, (2) viable isolates for identification and serotyping/serogrouping (ST/SG) and (3) simulated cerebral spinal fluid (CSF) samples for species detection and ST/SG using polymerase chain reaction (PCR). SSLs and NLs tested for Gram staining and species identification (partial panel). RRLs, plus any SSLs and NLs (optionally) also analyzed the simulated CSF samples (full panel). The passing score was ≥75% for NLs and SSLs, and ≥90% for RRLs and NLs/SSLs testing the full panel. (3) Results: Overall, 63% (5/8) of the SSLs and NLs were able to correctly identify the targeted pathogens, in 2019; but there were challenges to identify Haemophilus influenzae either on Gram stains (35% of the labs failed 2014), or in culture. Individual performance showed inconsistent capacity, with only 39% (13/33) of the SSLs/NLs passing the EQA exercise throughout all surveys in which they participated. RRLs performed well over the study period, but one of the two failed to reach the minimal passing score in 2016 and 2018; while the SSLs/NLs that optionally tested the full panel scored between 75% and 90% (intermediate pass category). (4) Conclusions: We identified a need for implementing a robust quality management system for timely identification of the gaps and then implementing corrective and preventive actions, in addition to continuous refresher training in the SSLs and NLs supporting the IB-VPD surveillance in the World Health Organization, Regional Office for Africa (WHO AFRO).

6.
PLoS One ; 18(8): e0289557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535692

RESUMO

INTRODUCTION: Several important human pathogens that cause life-threatening infections are asymptomatically carried in the Nasopharynx/Oropharynx (NP/OP). DNA extraction is a prerequisite for most culture-independent techniques used to identify pathogens in the NP/OP. However, components of DNA extraction kits differ thereby giving rise to differences in performance. We compared the DNA concentration and the detection of three pathogens in the NP/OP using the discontinued DNeasy PowerSoil Kit (Kit DP) and the DNeasy PowerLyzer PowerSoil Kit (Kit DPP). METHODS: DNA was extracted from the same set of 103 NP/OP samples using the two kits. DNA concentration was measured using the Qubit 2.0 Fluorometer. Real-time Polymerase Chain reaction (RT-PCR) was done using the QuantStudio 7-flex system to detect three pathogens: S. pneumoniae, H. influenzae, and N. meningitidis. Bland-Altman statistics and plots were used to determine the threshold cycle (Ct) value agreement for the two kits. RESULTS: The average DNA concentration from kit DPP was higher than Kit DP; 1235.6 ng/ml (SD = 1368.3) vs 884.9 ng/ml (SD = 1095.3), p = 0.002. Using a Ct value cutoff of 40 for positivity, the concordance for the presence of S. pneumoniae was 82% (84/102); 94%(96/103) for N. meningitidis and 92%(95/103) for H. influenzae. Kit DP proportionately resulted in higher Ct values than Kit DPP for all pathogens. The Ct value bias of measurement for S. pneumoniae was +2.4 (95% CI, 1.9-3.0), +1.4 (95% CI, 0.9-1.9) for N. meningitidis and +1.4 (95% CI, 0.2-2.5) for H. influenzae. CONCLUSION: The higher DNA concentration obtained using kit DPP could increase the chances of recovering low abundant bacteria. The PCR results were reproducible for more than 90% of the samples for the gram-negative H. influenzae and N. meningitidis. Ct value variations of the kits must be taken into consideration when comparing studies that have used the two kits.


Assuntos
Bactérias , Neisseria meningitidis , Humanos , Bactérias/genética , DNA , Neisseria meningitidis/genética , Streptococcus pneumoniae/genética , Reação em Cadeia da Polimerase em Tempo Real , Nasofaringe , Orofaringe , Haemophilus influenzae/genética , DNA Bacteriano/genética
8.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083600

RESUMO

The introduction of pneumococcal conjugate vaccines (PCV7, PCV10, PCV13) around the world has proved successful in preventing invasive pneumococcal disease. However, immunization against Streptococcus pneumoniae has led to serotype replacement by non-vaccine serotypes, including serotype 15A. Clonal complex 63 (CC63) is associated with many serotypes and has been reported in association with 15A after introduction of PCVs. A total of 865 CC63 isolates were included in this study, from the USA (n=391) and a global collection (n=474) from 1998-2019 and 1995-2018, respectively. We analysed the genomic sequences to identify serotypes and penicillin-binding protein (PBP) genes 1A, 2B and 2X, and other resistance determinants, to predict minimum inhibitory concentrations (MICs) against penicillin, erythromycin, clindamycin, co-trimoxazole and tetracycline. We conducted phylogenetic and spatiotemporal analyses to understand the evolutionary history of the 15A-CC63 sub-lineage. Overall, most (89.5 %, n=247) pre-PCV isolates in the CC63 cluster belonged to serotype 14, with 15A representing 6.5 % of isolates. Conversely, serotype 14 isolates represented 28.2 % of post-PCV CC63 isolates (n=618), whilst serotype 15A isolates represented 65.4 %. Dating of the CC63 lineage determined the most recent common ancestor emerged in the 1980s, suggesting the 15A-CC63 sub-lineage emerged from its closest serotype 14 ancestor prior to the development of pneumococcal vaccines. This sub-lineage was predominant in the USA, Israel and China. Multidrug resistance (to three or more drug classes) was widespread among isolates in this sub-lineage. We show that the CC63 lineage is globally distributed and most of the isolates are penicillin non-susceptible, and thus should be monitored.


Assuntos
Penicilinas , Streptococcus pneumoniae , Vacinas Conjugadas , Filogenia , Penicilinas/farmacologia , Genômica
10.
Microbiome ; 11(1): 29, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803868

RESUMO

BACKGROUND: Long-term azithromycin (AZM) treatment reduces the frequency of acute respiratory exacerbation in children and adolescents with HIV-associated chronic lung disease (HCLD). However, the impact of this treatment on the respiratory bacteriome is unknown. METHOD: African children with HCLD (defined as forced expiratory volume in 1 s z-score (FEV1z) less than - 1.0 with no reversibility) were enrolled in a placebo-controlled trial of once-weekly AZM given for 48-weeks (BREATHE trial). Sputum samples were collected at baseline, 48 weeks (end of treatment) and 72 weeks (6 months post-intervention in participants who reached this timepoint before trial conclusion). Sputum bacterial load and bacteriome profiles were determined using 16S rRNA gene qPCR and V4 region amplicon sequencing, respectively. The primary outcomes were within-participant and within-arm (AZM vs placebo) changes in the sputum bacteriome measured across baseline, 48 weeks and 72 weeks. Associations between clinical or socio-demographic factors and bacteriome profiles were also assessed using linear regression. RESULTS: In total, 347 participants (median age: 15.3 years, interquartile range [12.7-17.7]) were enrolled and randomised to AZM (173) or placebo (174). After 48 weeks, participants in the AZM arm had reduced sputum bacterial load vs placebo arm (16S rRNA copies/µl in log10, mean difference and 95% confidence interval [CI] of AZM vs placebo - 0.54 [- 0.71; - 0.36]). Shannon alpha diversity remained stable in the AZM arm but declined in the placebo arm between baseline and 48 weeks (3.03 vs. 2.80, p = 0.04, Wilcoxon paired test). Bacterial community structure changed in the AZM arm at 48 weeks compared with baseline (PERMANOVA test p = 0.003) but resolved at 72 weeks. The relative abundances of genera previously associated with HCLD decreased in the AZM arm at 48 weeks compared with baseline, including Haemophilus (17.9% vs. 25.8%, p < 0.05, ANCOM ω = 32) and Moraxella (1% vs. 1.9%, p < 0.05, ANCOM ω = 47). This reduction was sustained at 72 weeks relative to baseline. Lung function (FEV1z) was negatively associated with bacterial load (coefficient, [CI]: - 0.09 [- 0.16; - 0.02]) and positively associated with Shannon diversity (0.19 [0.12; 0.27]). The relative abundance of Neisseria (coefficient, [standard error]: (2.85, [0.7], q = 0.01), and Haemophilus (- 6.1, [1.2], q < 0.001) were positively and negatively associated with FEV1z, respectively. An increase in the relative abundance of Streptococcus from baseline to 48 weeks was associated with improvement in FEV1z (3.2 [1.11], q = 0.01) whilst an increase in Moraxella was associated with decline in FEV1z (-2.74 [0.74], q = 0.002). CONCLUSIONS: AZM treatment preserved sputum bacterial diversity and reduced the relative abundances of the HCLD-associated genera Haemophilus and Moraxella. These bacteriological effects were associated with improvement in lung function and may account for reduced respiratory exacerbations associated with AZM treatment of children with HCLD. Video Abstract.


Assuntos
Infecções por HIV , Pneumopatias , Adolescente , Humanos , Criança , Azitromicina/uso terapêutico , Antibacterianos/uso terapêutico , Escarro/microbiologia , Carga Bacteriana , RNA Ribossômico 16S/genética , Pneumopatias/tratamento farmacológico , Bactérias/genética , Haemophilus , Moraxella , Pulmão/microbiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico
12.
J Clin Microbiol ; 61(1): e0080222, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36515506

RESUMO

Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and biology, but schemes specific for S. mitis are not currently available. We therefore developed a multilocus sequence typing (MLST) scheme and defined sequence clusters or lineages of S. mitis using a comprehensive global data set of 322 genomes (148 publicly available and 174 newly sequenced). We used internal 450-bp sequence fragments of seven housekeeping genes (accA, gki, hom, oppC, patB, rlmN, and tsf) to define the MLST scheme and derived the global S. mitis sequence clusters using the PopPUNK clustering algorithm. We identified an initial set of 259 sequence types (STs) and 258 global sequence clusters. The schemes showed high concordance (100%), capturing extensive S. mitis diversity with strains assigned to multiple unique STs and global sequence clusters. The tools also identified extensive within- and between-host S. mitis genetic diversity among isolates sampled from a cohort of healthy individuals, together with potential transmission events, supported by both phylogeny and pairwise single nucleotide polymorphism (SNP) distances. Our novel molecular typing and strain clustering schemes for S. mitis allow for the integration of new strain data, are electronically portable at the PubMLST database (https://pubmlst.org/smitis), and offer a standardized approach to understanding the population structure of S. mitis. These robust tools will enable new insights into the epidemiology of S. mitis colonization, disease and transmission.


Assuntos
Streptococcus mitis , Streptococcus , Humanos , Tipagem de Sequências Multilocus , Streptococcus mitis/genética , Streptococcus/genética , Análise por Conglomerados , Filogenia
13.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233182

RESUMO

To improve the storage and transport of clinical specimens for the diagnosis of Neisseria meningitidis (Nm) infections in resource-limited settings, we have evaluated the performance of dried blood spot (DBS) and dried cerebrospinal fluid spot (DCS) assays. DBS and DCS were prepared on filter paper from liquid specimens previously tested for Nm in the United Kingdom. Nm was detected and genogrouped by real-time PCR performed on crude genomic DNA extracted from the DBS (n = 226) and DCS (n = 226) specimens. Targeted whole-genome sequencing was performed on a subset of specimens, DBS (n = 4) and DCS (n = 6). The overall agreement between the analysis of liquid and dried specimens was (94.2%; 95% CI 90.8−96.7) for blood and (96.4%; 95% CI 93.5−98.0) for cerebrospinal fluid. Relative to liquid specimens as the reference, the DBS and DCS assays had sensitivities of (89.1%; 95% CI 82.7−93.8) and (94.2%; 95% CI 88.9−97.5), respectively, and both assays had specificities above 98%. A genogroup was identified by dried specimen analysis for 81.9% of the confirmed meningococcal infections. Near full-length Nm genome sequences (>86%) were obtained for all ten specimens tested which allowed determination of the sequence type, clonal complex, presence of antimicrobial resistance and other meningococcal genotyping. Dried blood and CSF filter spot assays offer a practical alternative to liquid specimens for the molecular and genomic characterisation of invasive meningococcal diseases in low-resource settings.


Assuntos
Anti-Infecciosos , Infecções Meningocócicas , Neisseria meningitidis , DNA , Teste em Amostras de Sangue Seco , Humanos , Infecções Meningocócicas/diagnóstico , Neisseria meningitidis/genética
14.
Lancet Microbe ; 3(10): e735-e743, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985351

RESUMO

BACKGROUND: Serotype 24F is one of the emerging pneumococcal serotypes after the introduction of pneumococcal conjugate vaccine (PCV). We aimed to identify lineages driving the increase of serotype 24F in France and place these findings into a global context. METHODS: Whole-genome sequencing was performed on a collection of serotype 24F pneumococci from asymptomatic colonisation (n=229) and invasive disease (n=190) isolates among individuals younger than 18 years in France, from 2003 to 2018. To provide a global context, we included an additional collection of 24F isolates in the Global Pneumococcal Sequencing (GPS) project database for analysis. A Global Pneumococcal Sequence Cluster (GPSC) and a clonal complex (CC) were assigned to each genome. Phylogenetic, evolutionary, and spatiotemporal analysis were conducted using the same 24F collection and supplemented with a global collection of genomes belonging to the lineage of interest from the GPS project database (n=25 590). FINDINGS: Serotype 24F was identified in numerous countries mainly due to the clonal spread of three lineages: GPSC10 (CC230), GPSC16 (CC156), and GPSC206 (CC7701). GPSC10 was the only multidrug-resistant lineage. GPSC10 drove the increase in 24F in France and had high invasive disease potential. The international dataset of GPSC10 (n=888) revealed that this lineage expressed 16 other serotypes, with only six included in 13-valent PCV (PCV13). All serotype 24F isolates were clustered in a single clade within the GPSC10 phylogeny and long-range transmissions were detected from Europe to other continents. Spatiotemporal analysis showed GPSC10-24F took 3-5 years to spread across France and a rapid change of serotype composition from PCV13 serotype 19A to 24F during the introduction of PCV13 was observed in neighbouring country Spain. INTERPRETATION: Our work reveals that GPSC10 alone is a challenge for serotype-based vaccine strategy. More systematic investigation to identify lineages like GPSC10 will better inform and improve next-generation preventive strategies against pneumococcal diseases. FUNDING: Bill & Melinda Gates Foundation, Wellcome Sanger Institute, and the US Centers for Disease Control and Prevention.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Filogenia , Infecções Pneumocócicas/epidemiologia , Sorogrupo , Streptococcus pneumoniae/genética , Vacinas Conjugadas
15.
Microb Genom ; 8(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35384831

RESUMO

Pneumococcal serotype 35B is an important non-conjugate vaccine (non-PCV) serotype. Its continued emergence, post-PCV7 in the USA, was associated with expansion of a pre-existing 35B clone (clonal complex [CC] 558) along with post-PCV13 emergence of a non-35B clone previously associated with PCV serotypes (CC156). This study describes lineages circulating among 35B isolates in South Africa before and after PCV introduction. We also compared 35B isolates belonging to a predominant 35B lineage in South Africa (GPSC5), with isolates belonging to the same lineage in other parts of the world. Serotype 35B isolates that caused invasive pneumococcal disease in South Africa in 2005-2014 were characterized by whole-genome sequencing (WGS). Multi-locus sequence types and global pneumococcal sequence clusters (GPSCs) were derived from WGS data of 63 35B isolates obtained in 2005-2014. A total of 262 isolates that belong to GPSC5 (115 isolates from South Africa and 147 from other countries) that were sequenced as part of the global pneumococcal sequencing (GPS) project were included for comparison. Serotype 35B isolates from South Africa were differentiated into seven GPSCs and GPSC5 was most common (49 %, 31/63). While 35B was the most common serotype among GPSC5/CC172 isolates in South Africa during the PCV13 period (66 %, 29/44), 23F was the most common serotype during both the pre-PCV (80 %, 37/46) and PCV7 period (32 %, 8/25). Serotype 35B represented 15 % (40/262) of GPSC5 isolates within the global GPS database and 75 % (31/40) were from South Africa. The predominance of the GPSC5 lineage within non-vaccine serotype 35B, is possibly unique to South Africa and warrants further molecular surveillance of pneumococci.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Sorogrupo , África do Sul/epidemiologia , Streptococcus pneumoniae/genética , Vacinas Conjugadas
16.
Genome Biol Evol ; 14(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35439297

RESUMO

The isolation of Streptococcus pneumoniae serotypes in systemic tissues of patients with invasive disease versus the nasopharynx of healthy individuals with asymptomatic carriage varies widely. Some serotypes are hyper-invasive, particularly serotype 1, but the underlying genetics remain poorly understood due to the rarity of carriage isolates, reducing the power of comparison with invasive isolates. Here, we use a well-controlled genome-wide association study to search for genetic variation associated with invasiveness of serotype 1 pneumococci from a serotype 1 endemic setting in Africa. We found no consensus evidence that certain genomic variation is overrepresented among isolates from patients with invasive disease than asymptomatic carriage. Overall, the genomic variation explained negligible phenotypic variability, suggesting a minimal effect on the disease status. Furthermore, changes in lineage distribution were seen with lineages replacing each other over time, highlighting the importance of continued pathogen surveillance. Our findings suggest that the hyper-invasiveness is an intrinsic property of the serotype 1 strains, not specific for a "disease-associated" subpopulation disproportionately harboring unique genomic variation.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Portador Sadio/epidemiologia , Estudo de Associação Genômica Ampla , Genômica , Humanos , Nasofaringe , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae/genética
17.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35302932

RESUMO

Non-typhoidal Salmonella associated with multidrug resistance cause invasive disease in sub-Saharan Africa. Specific lineages of serovars Typhimurium and Enteritidis have been implicated. Here we characterized the genomic diversity of 100 clinical non-typhoidal Salmonella collected from 93 patients in 2001 from the eastern, and in 2006-2018 from the western regions of The Gambia respectively. A total of 93 isolates (64 invasive, 23 gastroenteritis and six other sites) representing a single infection episode were phenotypically tested for antimicrobial susceptibility using the Kirby-Bauer disc diffusion technique. Whole genome sequencing of 100 isolates was performed using Illumina, and the reads were assembled and analysed using SPAdes. The Salmonella in Silico Typing Resource (SISTR) was used for serotyping. SNP differences among the 93 isolates were determined using Roary, and phylogenetic analysis was performed in the context of 495 African strains from the European Nucleotide Archive. Salmonella serovars Typhimurium (26/64; 30.6 %) and Enteritidis (13/64; 20.3 %) were associated with invasive disease, whilst other serovars were mainly responsible for gastroenteritis (17/23; 73.9 %). The presence of three major serovar Enteritidis clades was confirmed, including the invasive West African clade, which made up more than half (11/16; 68.8 %) of the genomes. Multidrug resistance was confined among the serovar Enteritidis West African clade. The presence of this epidemic virulent clade has potential for spread of resistance and thus important implications for systematic patient management. Surveillance and epidemiological investigations to inform control are warranted.


Assuntos
Gastroenterite , Infecções por Salmonella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Gâmbia/epidemiologia , Gastroenterite/epidemiologia , Genômica , Humanos , Filogenia , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/genética
18.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35141318

RESUMO

Selection for resistance to azithromycin (AZM) and other antibiotics such as tetracyclines and lincosamides remains a concern with long-term AZM use for treatment of chronic lung diseases (CLD). We investigated the impact of 48 weeks of AZM on the carriage and antibiotic resistance of common respiratory bacteria among children with HIV-associated CLD. Nasopharyngeal (NP) swabs and sputa were collected at baseline, 48 and 72 weeks from participants with HIV-associated CLD randomised to receive weekly AZM or placebo for 48 weeks and followed post-intervention until 72 weeks. The primary outcomes were prevalence and antibiotic resistance of Streptococcus pneumoniae (SP), Staphylococcus aureus (SA), Haemophilus influenzae (HI) and Moraxella catarrhalis (MC) at these timepoints. Mixed-effects logistic regression and Fisher's exact test were used to compare carriage and resistance, respectively. Of 347 (174 AZM, 173 placebo) participants (median age 15 years (IQR 13-18), female 49%), NP carriage was significantly lower in the AZM (n=159) compared to placebo (n=153) arm for SP (18% versus 41%, p<0.001), HI (7% versus 16%, p=0.01) and MC (4% versus 11%, p=0.02); SP resistance to AZM (62% (18 out of 29) versus 13% (8 out of 63), p<0.0001) or tetracycline (60% (18 out of 29) versus 21% (13 out of 63), p<0.0001) was higher in the AZM arm. Carriage of SA resistant to AZM (91% (31 out of 34) versus 3% (1 out of 31), p<0.0001), tetracycline (35% (12 out of 34) versus 13% (4 out of 31), p=0.05) and clindamycin (79% (27 out of 34) versus 3% (1 out of 31), p<0.0001) was also significantly higher in the AZM arm and persisted at 72 weeks. Similar findings were observed for sputa. The persistence of antibiotic resistance and its clinical relevance for future infectious episodes requiring treatment needs further investigation.

19.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35119356

RESUMO

The transmission dynamics of Streptococcus pneumoniae in sub-Saharan Africa are poorly understood due to a lack of adequate epidemiological and genomic data. Here we leverage a longitudinal cohort from 21 neighbouring villages in rural Africa to study how closely related strains of S. pneumoniae are shared among infants. We analysed 1074 pneumococcal genomes isolated from 102 infants from 21 villages. Strains were designated for unique serotype and sequence-type combinations, and we arbitrarily defined strain sharing where the pairwise genetic distance between strains could be accounted for by the mean within host intra-strain diversity. We used non-parametric statistical tests to assess the role of spatial distance and prolonged carriage on strain sharing using a logistic regression model. We recorded 458 carriage episodes including 318 (69.4 %) where the carried strain was shared with at least one other infant. The odds of strain sharing varied significantly across villages (χ2=47.5, df=21, P-value <0.001). Infants in close proximity to each other were more likely to be involved in strain sharing, but we also show a considerable amount of strain sharing across longer distances. Close geographic proximity (<5 km) between shared strains was associated with a significantly lower pairwise SNP distance compared to strains shared over longer distances (P-value <0.005). Sustained carriage of a shared strain among the infants was significantly more likely to occur if they resided in villages within a 5 km radius of each other (P-value <0.005, OR 3.7). Conversely, where both infants were transiently colonized by the shared strain, they were more likely to reside in villages separated by over 15 km (P-value <0.05, OR 1.5). PCV7 serotypes were rare (13.5 %) and were significantly less likely to be shared (P-value <0.001, OR -1.07). Strain sharing was more likely to occur over short geographical distances, especially where accompanied by sustained colonization. Our results show that strain sharing is a useful proxy for studying transmission dynamics in an under-sampled population with limited genomic data. This article contains data hosted by Microreact.


Assuntos
Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/transmissão , População Rural , Streptococcus pneumoniae/genética , África/epidemiologia , Humanos , Lactente , Microbiota , Nasofaringe/microbiologia , Infecções Pneumocócicas/epidemiologia , Sorogrupo , Streptococcus pneumoniae/classificação , Sequenciamento Completo do Genoma
20.
EBioMedicine ; 73: 103644, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34695658

RESUMO

BACKGROUND: The specific roles that gut microbiota, known pathogens, and host energy-regulating hormones play in the pathogenesis of non-edematous severe acute malnutrition (marasmus SAM) and moderate acute malnutrition (MAM) during outpatient nutritional rehabilitation are yet to be explored. METHODS: We applied an ensemble of sample-specific (intra- and inter-modality) association networks to gain deeper insights into the pathogenesis of acute malnutrition and its severity among children under 5 years of age in rural Gambia, where marasmus SAM is most prevalent. FINDINGS: Children with marasmus SAM have distinct microbiome characteristics and biologically-relevant multimodal biomarkers not observed among children with moderate acute malnutrition. Marasmus SAM was characterized by lower microbial richness and biomass, significant enrichments in Enterobacteriaceae, altered interactions between specific Enterobacteriaceae and key energy regulating hormones and their receptors. INTERPRETATION: Our findings suggest that marasmus SAM is characterized by the collapse of a complex system with nested interactions and key associations between the gut microbiome, enteric pathogens, and energy regulating hormones.  Further exploration of these systems will help inform innovative preventive and therapeutic interventions. FUNDING: The work was supported by the UK Medical Research Council (MRC; MC-A760-5QX00) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement; Bill and Melinda Gates Foundation (OPP 1066932) and the National Institute of Medical Research (NIMR), UK. This network analysis was supported by NIH U54GH009824 [CLD] and NSF OCE-1558453 [CLD].


Assuntos
Metabolismo Energético , Microbioma Gastrointestinal , Hormônios/metabolismo , Interações Hospedeiro-Patógeno , Desnutrição Aguda Grave/etiologia , Desnutrição Aguda Grave/metabolismo , Biodiversidade , Estudos Transversais , Suscetibilidade a Doenças , Enterobacteriaceae/patogenicidade , Fezes/microbiologia , Gâmbia/epidemiologia , Humanos , Metagenoma , Metagenômica/métodos , Fenótipo , População Rural , Desnutrição Aguda Grave/diagnóstico , Desnutrição Aguda Grave/epidemiologia , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA