Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(6): 3481-3499, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38456329

RESUMO

CONTEXT: Qi-dan-dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. OBJECTIVE: This study reveals the mechanism by which QDD ameliorates DKD. MATERIALS AND METHODS: The compounds in QDD were identified by high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD-low (QDD-L), and 2% QDD-high (QDD-H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose-treated HK-2 and NRK-52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. RESULTS: A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial-mesenchymal transition (EMT) via the p38MAPK and AKT-mammalian target of rapamycin (mTOR) pathways. DISCUSSION AND CONCLUSION: QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Fibrose , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Medicamentos de Ervas Chinesas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ratos , Rim/efeitos dos fármacos , Rim/patologia , Linhagem Celular , Ratos Sprague-Dawley , Camundongos , Humanos
2.
Nat Commun ; 15(1): 1685, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402239

RESUMO

The cargo content in small extracellular vesicles (sEVs) changes under pathological conditions. Our data shows that in obesity, extracellular matrix protein 1 (ECM1) protein levels are significantly increased in circulating sEVs, which is dependent on integrin-ß2. Knockdown of integrin-ß2 does not affect cellular ECM1 protein levels but significantly reduces ECM1 protein levels in the sEVs released by these cells. In breast cancer (BC), overexpressing ECM1 increases matrix metalloproteinase 3 (MMP3) and S100A/B protein levels. Interestingly, sEVs purified from high-fat diet-induced obesity mice (D-sEVs) deliver more ECM1 protein to BC cells compared to sEVs from control diet-fed mice. Consequently, BC cells secrete more ECM1 protein, which promotes cancer cell invasion and migration. D-sEVs treatment also significantly enhances ECM1-mediated BC metastasis and growth in mouse models, as evidenced by the elevated tumor levels of MMP3 and S100A/B. Our study reveals a mechanism and suggests sEV-based strategies for treating obesity-associated BC.


Assuntos
Vesículas Extracelulares , Neoplasias , Animais , Camundongos , Proteínas da Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Integrinas , Metaloproteinase 3 da Matriz/genética , Obesidade
3.
Nat Commun ; 15(1): 1034, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310105

RESUMO

Obesity, a global health challenge, is a major risk factor for multiple life-threatening diseases, including diabetes, fatty liver, and cancer. There is an ongoing need to identify safe and tolerable therapeutics for obesity management. Herein, we show that treatment with artesunate, an artemisinin derivative approved by the FDA for the treatment of severe malaria, effectively reduces body weight and improves metabolic profiles in preclinical models of obesity, including male mice with overnutrition-induced obesity and male cynomolgus macaques with spontaneous obesity, without inducing nausea and malaise. Artesunate promotes weight loss and reduces food intake in obese mice and cynomolgus macaques by increasing circulating levels of Growth Differentiation Factor 15 (GDF15), an appetite-regulating hormone with a brainstem-restricted receptor, the GDNF family receptor α-like (GFRAL). Mechanistically, artesunate induces the expression of GDF15 in multiple organs, especially the liver, in mice through a C/EBP homologous protein (CHOP)-directed integrated stress response. Inhibition of GDF15/GFRAL signalling by genetic ablation of GFRAL or tissue-specific knockdown of GDF15 abrogates the anti-obesity effect of artesunate in mice with diet-induced obesity, suggesting that artesunate controls bodyweight and appetite in a GDF15/GFRAL signalling-dependent manner. These data highlight the therapeutic benefits of artesunate in the treatment of obesity and related comorbidities.


Assuntos
Fator 15 de Diferenciação de Crescimento , Obesidade , Camundongos , Masculino , Animais , Artesunato/farmacologia , Artesunato/uso terapêutico , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Primatas , Macaca/metabolismo
4.
Heliyon ; 9(11): e21997, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027651

RESUMO

Background: IgA nephropathy (IgAN) is a major and growing public health problem. Renal fibrosis plays a vital role in the progression of IgAN. This study is to investigate the mechanisms of action underlying the therapeutic effects of Shenbing Decoction II (SBDII) in IgAN renal fibrosis treatment based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), network pharmacology and experimental verification. Method: We first used UPLC-MS/MS to explore the main compounds of SBDII, and then used network pharmacology to predict the targets and key pathways of SBDII in the treatment of IgAN renal fibrosis. Next, bovine serum albumin (BSA), lipopolysaccharide (LPS), and carbon tetrachloride (CCL4) were used to induce IgAN in rats, and then biochemical indicators, renal tissue pathology, and renal fibrosis-related indicators were examined. At the same time, part of the results predicted by network pharmacology were also verified. Result: A total of 105 compounds were identified in SBDII by UPLC-MS/MS. Network pharmacology results showed that the active compounds such as acacetin, eupatilin, and galangin may mediate the therapeutic effects of SBDII in treating IgAN by targeting tumor protein p53 (TP53) and regulating phosphatidylinositol 3-kinase (PI3K)-Akt kinase (Akt) signaling pathway. Animal experiments showed that SBDII not only significantly improved renal function and fibrosis in IgAN rats, but also significantly downregulated the expressions of p53, p-PI3K and p-Akt. Conclusion: This UPLC-MS/MS, network pharmacological and experimental study highlights that the TP53 as a target, and PI3K-Akt signaling pathway are the potential mechanism by which SBDII is involved in IgAN renal fibrosis treatment. Acacetin, eupatilin, and galangin are probable active compounds in SBDII, these results might provide valuable guidance for further studies of IgAN renal fibrosis treatment.

5.
Biomed Pharmacother ; 167: 115573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769391

RESUMO

Ovarian cancer (OC) stands as the second most prominent factor leading to cancer-related fatalities, characterized by a notably low five-year survival rate. The insidious onset of OC combined with its resistance to chemotherapy poses significant challenges in terms of treatment, emphasizing the utmost importance of developing innovative therapeutic agents. Despite its remarkable anti-tumor efficacy, celastrol (CEL) faces challenges regarding its clinical utilization in OC due to its restricted water solubility and notable side effects. In this study, celastrol (CEL) was encapsulated into Zeolitic imidazolate framework-8(ZIF-8) nanoparticle and grafted with biotin-conjugated polyethylene glycol (CEL@ZIF-8@PEG-BIO). Comprehensive comparisons of the physicochemical properties and anticancer activities of CEL and CEL@ZIF-8@PEG-BIO were conducted. Our findings revealed that CEL@ZIF-8@PEG-BIO exhibited favorable characteristics, including hydrodynamic diameters of 234.5 nm, excellent water solubility, high drug loading (31.60% ± 2.85), encapsulation efficiency (60.52% ± 2.79), and minimal side effects. Furthermore, CEL@ZIF-8@PEG-BIO can release chemicals in response to an acidic micro-environment, which is more likely a tumor micro-environment. In vitro, studies showed that CEL@ZIF-8@BIO inhibited cell proliferation, led to mitochondrial membrane potential (MMP) decline, and generated reactive oxygen species in OC cells. Both in vitro and in vivo experiments indicated that CEL@ZIF-8@PEG-BIO enhanced anti-tumor activity against OC via up-regulated apoptosis-promoting biomarkers and rendered cancer cell apoptosis via the P38/JNK MAPK signaling pathway. In conclusion, we have successfully developed a novel drug delivery system (CEL@ZIF-8@PEG-BIO), resulting in significant improvements in both water solubility and anti-tumor efficacy thereby providing valuable insights for future clinical drug development.

6.
Heliyon ; 9(8): e18488, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37593607

RESUMO

Colorectal cancer (CRC) is the third most common cause of cancer-related morbidity worldwide, with an estimated of 1.85 million new cases and 850,000 deaths every year. Nevertheless, the current treatment regimens for CRC have many disadvantages, including toxicities and off-targeted side effects. STAT3 (signal transducer and activator of transcription 3) has been considered as a promising molecular target for CRC therapy. Brevilin A, a sesquiterpene lactone compound rich in Centipedae Herba has potent anticancer effects in nasopharyngeal, prostate and breast cancer cells by inhibiting the STAT3 signaling. However, the anti-CRC effect of brevilin A and the underlying mechanism of action have not been fully elucidated. In this study, we aimed to investigate the involvement of STAT3 signaling in the anti-CRC action of brevilin A. Here, HCT-116 and CT26 cell models were used to investigate the anti-CRC effects of brevilin A in vitro. HCT-116 cells overespressing with STAT3 were used to evaluate the involvement of STAT3 signaling in the anti-CRC effect of brevilin A. Screening of 49 phosphorylated tyrosine kinases in the HCT-116 cells after brevilin A treatment was performed by using the human phospho-receptor tyrosine kinase (phospho-RTK) array. Results showed that brevilin A inhibited cell proliferation and cell viability, induced apoptosis, reduced cell migration and invasion, inhibited angiogenesis, lowered the protein expression levels of phospho-Src (Tyr416), phospho-JAK2 (Y1007/1008) and phospho-STAT3 (Tyr705), and inhibited STAT3 activation and nuclear localization. Brevilin A also significantly reduced the protein expression levels of STAT3 target genes, such as MMP-2, VEGF and Bcl-xL. More importantly, over-activation of STAT3 diminished brevilin A's effects on cell viability. All these results suggest that brevilin A exerts potent anti-CRC effects, at least in part, by inhibiting STAT3 signaling. Our findings provide a strong pharmacological basis for the future exploration and development of brevilin A as a novel STAT3-targeting phytotherapeutic agent for CRC treatment.

8.
J Ethnopharmacol ; 317: 116852, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390879

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a common difficult disease with a high disability rate. Siegesbeckia orientalis L. (SO), a Chinese medicinal herb that is commonly used for treating RA in clinical practice. While, the anti-RA effect and the mechanisms of action of SO, as well as its active compound(s) have not been elucidated clearly. AIM OF THE STUDY: We aim to explore the molecular mechanism of SO against RA by using network pharmacology analysis, as well as the in vitro and in vivo experimental validations, and to explore the potential bioactive compound(s) in SO. METHODS: Network pharmacology is an advanced technology that provides us an efficient way to study the therapeutic actions of herbs with the underlying mechanisms of action delineated. Here, we used this approach to explore the anti-RA effects of SO, and then the molecular biological approaches were used to verify the prediction. We first established a drug-ingredient-target-disease network and a protein-protein interaction (PPI) network of SO-related RA targets, followed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Further, we used lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and vascular endothelial growth factor-A (VEGFA)-induced human umbilical vein endothelial cell (HUVEC) models, as well as adjuvant-induced arthritis (AIA) rat model to validate the anti-RA effects of SO. The chemical profile of SO was also determined by using the UHPLC-TOF-MS/MS analysis. RESULTS: Network pharmacology analysis highlighted inflammatory- and angiogenesis-related signaling pathways as promising pathways that mediate the anti-RA effects of SO. Further, in both in vivo and in vitro models, we found that the anti-RA effect of SO is at least partially due to the inhibition of toll like receptor 4 (TLR4) signaling. Molecular docking analysis revealed that luteolin, an active compound in SO, shows the highest degree of connections in compound-target network; moreover, it has a direct binding to the TLR4/MD-2 complex, which is confirmed in cell models. Besides, more than forty compounds including luteolin, darutoside and kaempferol corresponding to their individual peaks were identified tentatively via matching with the empirical molecular formulae and their mass fragments. CONCLUSION: We found that SO and its active compound luteolin exhibit anti-RA activities and potently inhibit TLR4 signaling both in vitro and in vivo. These findings not only indicate the advantage of network pharmacology in the discovery of herb-based therapeutics for treating diseases, but also suggest that SO and its active compound(s) could be developed as potential anti-RA therapeutic drugs.


Assuntos
Artrite Reumatoide , Asteraceae , Medicamentos de Ervas Chinesas , Humanos , Animais , Ratos , Simulação de Acoplamento Molecular , Luteolina/farmacologia , Luteolina/uso terapêutico , Sigesbeckia , Receptor 4 Toll-Like , Fator A de Crescimento do Endotélio Vascular , Farmacologia em Rede , Espectrometria de Massas em Tandem , Artrite Reumatoide/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
9.
Biomater Sci ; 11(12): 4370-4384, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37144899

RESUMO

Amino acid-based poly(ester urea urethane) (AA-PEUU) is developed from amino acid-based ester urea building blocks interconnected with urethane blocks functionalized with poly(ethylene glycol) (PEG). Each functional block consists of structural design features that could impact the properties and performances of AA-PEUU as a nanocarrier for the systemic delivery of gambogic acid (GA). The multifunctional AA-PEUU structure provides broad tunability to enable the optimization of nanocarriers. The study investigates the structure-property relationship by fine-tuning the structure of AA-PEUU, including the amino acid type, hydrocarbons, the ratio of functional building blocks, and PEGylation, to identify the nanoparticle candidate with optimized delivery performances. Compared to free GA, the optimized PEUU nanocarrier improves the intratumoral distribution of GA by more than 9-fold, which significantly enhances the bioavailability and persistence of GA after intravenous administration. In an MDA-MB-231 xenograft mouse model, GA delivered by the optimized AA-PEUU nanocarrier exhibits significant tumor inhibition, apoptosis induction, and the anti-angiogenesis effect. The study demonstrates the potency of engineering AA-PEUU nanocarriers with tailor-designed structures and versatile tunability for the systemic delivery of therapeutics in the treatment of triple negative breast tumor.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Aminoácidos , Uretana , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ureia , Ésteres , Nanopartículas/química
10.
Front Oncol ; 13: 1091249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091185

RESUMO

Introduction: Brain metastasis is the terminal event of breast cancer with poor prognoses. Therefore, this article aimed to provide an updated summary on the development, hotspots, and research trends of brain metastasis from breast cancer based on bibliometric analysis. Method: Publications on breast cancer with brain metastasis retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and other online bibliometric analysis platforms were used to analyze and visualize the result. Result: In totality, 693 researchers from 3,623 institutions across 74 counties and regions published a total of 2,790 papers in 607 journals. There was a noticeable increase in publications in 2006. The United States was the dominant country with the most publications followed by China. University Texas MD Anderson Cancer Center was the most productive institution, while Dana Farber Cancer Institution was the most cited. Journal of Neuro-Oncology published the most papers, while Journal of Clinical Oncology ranked first based on cocited analysis. Nancy U. Lin was the most productive and cited author with high influence. There was a focus on basic research, clinical trials, local therapy, treatment optimization, and epidemiological studies regarding brain metastases from breast cancer. References focused on pathogenesis, prevention, treatment, and prognosis were cited most frequently, among which the clinical trial of novel treatment attracted most attention from researchers. Reference citation burst detection suggested that new therapies such as the novel tyrosine kinase inhibitor and antibody-drug conjugate may lead the research trends in the future. Conclusion: High-income countries contributed more to the field of breast cancer with brain metastasis, while developing countries like China developed quickly. Furthermore, the success of novel therapies in recent years may lead to the new era of treatment of breast cancer with brain metastasis in the future.

11.
J Transl Med ; 21(1): 260, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-37062842

RESUMO

BACKGROUND: More than half of the colorectal cancer (CRC) patients will develop liver metastasis that underlies the cancer mortality. In the hepatic tumor microenvironment, the interplay between CRC cells and hepatic stellate cells (HSCs), and the activation of HSCs to become carcinoma-associated fibroblasts (CAFs) will further promote the cancer development. Nevertheless, the critical signaling molecule that involved in these processes remains unknown, which hinders the development of effective therapeutic agents for the treatment of metastatic CRC (mCRC). METHODS: Conditioned medium system and co-cultured system were used to examine the interplay between CRC cells and HSCs. Luminex liquid suspension chip detection and enzyme-linked immunosorbent assay were used to screen for the mediators in the conditioned medium that facilitated the CRC-HSCs interplay and HSCs-to-CAFs differentiation. Cell and animal models were used to examine whether brevilin A inhibited CRC liver metastasis via the VEGF-IL6-STAT3 axis. RESULTS: In the CRC-HSCs interplay, CRC promoted HSCs-to-CAFs differentiation by releasing vascular endothelial growth factor (VEGF); and HSCs released interleukin 6 (IL6) that activated signal transducer and activator of transcription 3 (STAT3) in the CRC and hence increased the cancer metastatic potential. The functions of the VEGF-IL6-STAT3 axis in the HSCs-CRC interplay were further validated by VEGF recombinant protein and IL6 neutralizing antibody. More importantly, brevilin A, an active compound isolated from Centipeda minima (L.) A. Br. et Aschers, targeted the VEGF-IL6-STAT3 axis in the CRC-HSCs interplay, hence significantly inhibited colorectal liver metastasis and cancer growth both in vitro and in vivo. CONCLUSIONS: We are the first to demonstrate brevilin A possesses potent anti-mCRC effect by targeting the VEGF-IL6-STAT3 axis in the CRC-HSCs interplay. Our findings not only support the development of brevilin A as a novel therapeutic agent for mCRC treatment, but also pave the path for the development of other VEGF-IL6-STAT3 targeting therapeutic strategies.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Retais , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Interleucina-6/metabolismo , Células Estreladas do Fígado/metabolismo , Fator de Transcrição STAT3/metabolismo , Meios de Cultivo Condicionados , Neoplasias Hepáticas/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
12.
J Ethnopharmacol ; 316: 116358, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933872

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Yanghe Decoction (JWYHD) is a widely used traditional Chinese medicine prescription in the clinical setting for the treatment of autoimmune diseases. Many studies showed that JWYHD has anti-tumor activities in cell and animal models. However, the anti-breast cancer effects of JWYHD and the underlying mechanisms of action remain unknown. AIM OF STUDY: This study aimed to determine the anti-breast cancer effect and reveal the underlying mechanisms of action in vivo, in vitro and in silico. MATERIALS AND METHODS: Orthotopic xenograft breast cancer mouse model and inflammatory zebrafish model were used to observe the anti-tumor effect and immune cell regulation of JWYHD. Moreover, the anti-inflammatory effect of JWYHD were evaluated by the expression of RAW 264.7 cells. JWYHD active ingredients were obtained by UPLC-MS/MS and potential targets were screened by network pharmacology. The therapeutic targets and signaling pathways predicted by computer were assessed by Western blot, real-time PCR (RT-PCR), immunohistochemistry (IHC) staining, and Enzyme-linked immunosorbent assays (ELISA) to explore the therapeutic mechanism of JWYHD against breast cancer. At last, Colivelin and Stattic were used to explore the effect of JWYHD on JAK2/STAT3 pathway. RESULTS: JWYHD significantly decreased the tumor growth in a dose-dependent manner in the orthotopic xenograft breast cancer mouse model. Flow cytometry and IHC results indicated that JWYHD decreased the expressions of M2 macrophages and Treg while increasing M1 macrophages. Meanwhile, ELISA and Western blot results showed a decrease in IL-1ß, IL-6, TNFα, PTGS2 and VEGFα in tumor tissue of JWYHD groups. The results were also verified in LPS-induced RAW264.7 cells and zebrafish inflammatory models. TUNEL assay and IHC results showed that JWYHD significantly induced apoptosis. Seventy-two major compounds in JWYHD were identified by UPLC-MS/MS and Network pharmacology. It was found that the significant binding affinity of JWYHD to TNFα, PTGS2, EGFR, STAT3, VEGFα and their expressions were inhibited by JWYHD. IHC and Western blot analysis showed that JWYHD could decrease the expression of JAK2/STAT3 pathway. Furthermore, Colivelin could reverse the decrease effect of JWYHD in vitro. CONCLUSION: JWYHD exerts a significant anti-tumor effect mainly by inhibiting inflammation, activating immune responses and inducing apoptosis via the JAK2/STAT3 signaling pathway. Our findings provide strong pharmacological evidence for the clinical application of JWYHD in the management of breast cancer.


Assuntos
Neoplasias , Fator de Necrose Tumoral alfa , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra , Cromatografia Líquida , Ciclo-Oxigenase 2/metabolismo , Espectrometria de Massas em Tandem , Transdução de Sinais , Imunidade , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo
13.
J Ethnopharmacol ; 300: 115705, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099983

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhenwu Decoction (ZWD) is a traditional Chinese medicine (TCM) formula which has wide scope of indications related to Yang deficiency and dampness retention in TCM syndrome. Cardiac hypertrophy can induce similar symptoms and signs to the clinical features of Yang deficiency and dampness retention syndrome. ZWD can increase the left ventricular ejection fraction, reduce cardiac hypertrophy of patients with chronic heart failure. However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY: The study aimed to confirm the protective effects of ZWD on cardiac hypertrophy and explore the underlying mechanisms. MATERIALS AND METHODS: The potential targets and pathways of ZWD in cardiac hypertrophy were highlighted by network pharmacology and validated by mechanistic and functional studies. RESULTS: Our network pharmacology analysis suggests that the protective effects of ZWD on cardiac hypertrophy are related to cyclic guanosine monophosphate (cGMP) - protein kinase G (PKG) pathway. Subsequent animal studies showed that ZWD significantly ameliorated cardiac function decline, cardiac hypertrophy, cardiac fibrosis and cardiomyocyte apoptosis. To explore the underlying mechanisms of action, we performed Western blotting, immunohistochemical analysis, and detection of inflammatory response and oxidative stress. Our results showed that ZWD activated the soluble guanylate cyclase (sGC) - cGMP - PKG signaling pathway. The sGC inhibitor ODQ that blocks the sGC-cGMP-PKG signaling pathway in zebrafish abolished the protective effects of ZWD, suggesting sGC-cGMP-PKG is the main signaling pathway mediates the protective effect of ZWD in cardiac hypertrophy. In addition, three major ingredients from ZWD, poricoic acid C, hederagenin and dehydrotumulosic acid, showed a high binding energy with prototype sGC. CONCLUSION: ZWD reduces oxidative stress and inflammation and exerts cardioprotective effects by activating the sGC-cGMP-PKG signaling pathway.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico , Guanosina Monofosfato , Animais , Cardiomegalia/tratamento farmacológico , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Medicamentos de Ervas Chinesas , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Deficiência da Energia Yang , Peixe-Zebra
14.
Nat Commun ; 13(1): 7907, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564389

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Angiotensin-converting enzyme 2 (ACE2) is an entry receptor for SARS-CoV-2. The full-length membrane form of ACE2 (memACE2) undergoes ectodomain shedding to generate a shed soluble form (solACE2) that mediates SARS-CoV-2 entry via receptor-mediated endocytosis. Currently, it is not known how the physiological regulation of ACE2 shedding contributes to the etiology of COVID-19 in vivo. The present study identifies Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) as a critical host protease for solACE2-mediated SARS-CoV-2 infection. SARS-CoV-2 infection leads to increased activation of MT1-MMP that is colocalized with ACE2 in human lung epithelium. Mechanistically, MT1-MMP directly cleaves memACE2 at M706-S to release solACE218-706 that binds to the SARS-CoV-2 spike proteins (S), thus facilitating cell entry of SARS-CoV-2. Human solACE218-706 enables SARS-CoV-2 infection in both non-permissive cells and naturally insusceptible C57BL/6 mice. Inhibition of MT1-MMP activities suppresses solACE2-directed entry of SARS-CoV-2 in human organoids and aged mice. Both solACE2 and circulating MT1-MMP are positively correlated in plasma of aged mice and humans. Our findings provide in vivo evidence demonstrating the contribution of ACE2 shedding to the etiology of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Interações Hospedeiro-Patógeno , Metaloproteinase 14 da Matriz , SARS-CoV-2 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Cell Mol Life Sci ; 79(11): 570, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306016

RESUMO

BACKGROUND: Obesity affects the cargo packaging of the adipocyte-derived exosomes. Furthermore, adipocytes in different adipose tissues have different genetic makeup, the cargo contents of the exosomes derived from different adipose tissues under obesity conditions should be different, and hence their impacts on the pathophysiological conditions. METHODS AND RESULTS: iTRAQ-based quantitative proteomics show that obesity has more prominent effects on the protein profiles of the exosomes derived from subcutaneous adipose tissue (SAT-Exos) in the high fat diet-induced obesity (DIO) mice than those derived from epididymal adipose tissue (EAT-Exos) and visceral adipose tissue (VAT-Exos). The differentially expressed proteins (DEPs) in SAT-Exos and VAT-Exos are mainly involved in metabolism. Subsequent untargeted metabolomic and lipidomics analyses reveal that injection of these SAT-Exos into the B6/J-Rab27a-Cas9-KO mice significantly affects the mouse metabolism such as fatty acid metabolism. Some of the DEPs in SAT-Exos are correlated with fatty acid metabolism including ADP-ribosylation factor and mitogen-activated protein kinase kinase kinase-3. Pathway analysis also shows that SAT-Exos affect adipocyte lipolysis and glycerophospholipid metabolism, which is in parallel with the enhanced plasma levels of fatty acids, diglycerides, monoglycerides and the changes in glycerophospholipid levels in DIO mice. CONCLUSION: Our data provide scientific evidence to suggest SAT-Exos contribute to the changes in plasma lipid profiles under obesity conditions.


Assuntos
Exossomos , Camundongos , Animais , Exossomos/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Camundongos Obesos , Ácidos Graxos/metabolismo , Glicerofosfolipídeos/metabolismo
16.
Phytomedicine ; 106: 154396, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36057145

RESUMO

BACKGROUND: Meroterpenoid furanasperterpene A (T2-3) with a novel 6/6/6/6/5 pentacyclic skeleton was isolated from the Aspergillus terreus GZU-31-1. Previously, we showed that T2-3 possessed significant lipid-lowering effects in 3T3-L1 adipocytes at 5 µM concentration. However, its therapeutic effect in metabolic disease and the underlying mechanisms of action remain unclear. METHODS: High fat diet-induced obesity (DIO) mouse model and 3T3-L1 cell model were used to assess the anti-obesity effects of T2-3. Lipids in the adipocytes were examined by Oil Red O staining. ß-catenin expression was examined by immunofluorescence and Western blotting, its activity was assessed by TOPflash/FOPflash assay. RESULTS: T2-3 possessed potent anti-obesity effects in DIO mice, it significantly reduced body weight and subcutaneous adipose tissue (SAT) mass. Mechanistic studies showed that T2-3 significantly inhibited 3T3-L1 preadipocyte differentiation as indicated by the reduced number of mature adipocytes. The treatments also reduced the expressions of critical adipogenic transcription factors CEBP-α and PPAR-γ in both 3T3-L1 adipocytes and SAT in DIO mice. Interestingly, T2-3 increased the cytoplasmic and nuclear expressions of ß-catenin and the transcriptional activity of ß-catenin in 3T3-L1 adipocytes; the elevated ß-catenin expression was also observed in SAT of the T2-3-treated DIO mice. Indeed, upregulation of ß-catenin activity suppressed adipogenesis, while ß-catenin inhibitor JW67 reversed the anti-adipogenic effect of T2-3. Taken together, our data suggest that T2-3 inhibits adipogenesis by upregulating ß-catenin activity. CONCLUSIONS: Our study is the first report demonstrating meroterpenoid furanasperterpene A as a novel 6/6/6/6/5 pentacyclic skeleton (T2-3) that possesses potent anti-adipogenic effect by targeting ß-catenin signaling pathway. Our findings drive new anti-obesity drug discovery and provide drug leads for chemists and pharmacologists.


Assuntos
Fármacos Antiobesidade , Células 3T3-L1 , Adipogenia , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Diferenciação Celular , Lipídeos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR gama/metabolismo , Gordura Subcutânea/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo
17.
Mar Drugs ; 20(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35736173

RESUMO

Breast cancer (BC) is one of the most common cancers diagnosed and the leading cause of cancer-related death in women. Although there are first-line treatments for BC, drug resistances and adverse events have been reported. Given the incidence of BC keeps increasing, seeking novel therapeutics is urgently needed. Fucoxanthin (Fx) is a dietary carotenoid commonly found in seaweeds and diatoms. Both in vitro and in vivo studies show that Fx and its deacetylated metabolite fucoxanthinol (Fxol) inhibit and prevent BC growth. The NF-κB signaling pathway is considered the major pathway contributing to the anti-proliferation, anti-angiogenesis and pro-apoptotic effects of Fx and Fxol. Other signaling molecules such as MAPK, MMP2/9, CYP and ROS are also involved in the anti-cancer effects by regulating the tumor microenvironment, cancer metastasis, carcinogen metabolism and oxidation. Besides, Fx also possesses anti-obesity effects by regulating UCP1 levels and lipid metabolism, which may help to reduce BC risk. More importantly, mounting evidence demonstrates that Fx overcomes drug resistance. This review aims to give an updated summary of the anti-cancer effects of Fx and summarize the underlying mechanisms of action, which will provide novel strategies for the development of Fx as an anti-cancer therapeutic agent.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Microambiente Tumoral , Xantofilas/farmacologia , Xantofilas/uso terapêutico
18.
Nat Commun ; 13(1): 3749, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768470

RESUMO

Insulin sensitivity progressively declines with age. Currently, the mechanism underlying age-associated insulin resistance remains unknown. Here, we identify membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) as a central regulator of insulin sensitivity during ageing. Ageing promotes MMP14 activation in insulin-sensitive tissues, which cleaves Insulin Receptor to suppress insulin signaling. MT1-MMP inhibition restores Insulin Receptor expression, improving insulin sensitivity in aged mice. The cleavage of Insulin Receptor by MT1-MMP also contributes to obesity-induced insulin resistance and inhibition of MT1-MMP activities normalizes metabolic dysfunctions in diabetic mouse models. Conversely, overexpression of MT1-MMP in the liver reduces the level of Insulin Receptor, impairing hepatic insulin sensitivity in young mice. The soluble Insulin Receptor and circulating MT1-MMP are positively correlated in plasma from aged human subjects and non-human primates. Our findings provide mechanistic insights into regulation of insulin sensitivity during physiological ageing and highlight MT1-MMP as a promising target for therapeutic avenue against diabetes.


Assuntos
Resistência à Insulina , Metaloproteinase 14 da Matriz , Receptor de Insulina , Fatores Etários , Animais , Humanos , Insulina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Receptor de Insulina/metabolismo , Transdução de Sinais
19.
Phytomedicine ; 103: 154199, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679793

RESUMO

BACKGROUND: Liver fibrosis can be easily developed into irreversible liver cirrhosis or even liver cancer. Lysosomal acid lipase (LAL), encoded by the lipase A (Lipa) gene, is a critical enzyme involved in liver fibrosis development. Morroniside, an iridoid glycoside isolated from Cornus officinalis Sieb. et Zucc., exerts hepatic protective effects. However, the mechanism of action underling the anti-liver fibrosis effects of morroniside have not been fully elucidated. PURPOSE: To explore whether Lipa served as a biomarker for liver fibrosis and investigate the anti-liver fibrosis effects of morroniside and the underlying action mechanism in liver fibrosis cell models. METHODS: LAL expression was examined in the liver tissues of CCl4 and high-fat diet (HFD)-induced liver fibrosis animal models. α-smooth muscle actin (α-SMA) level, collagen and GATA family expressions were analyzed by Real-time PCR and Western blot. Putative transcription factor binding sites in the DNA sequences of Lipa was identified by PROMO-ALGGEN v8.3 online software and ENCODE ChIP-Seq Significance Tool. MD simulation was performed to explore the protein-ligand interaction. RESULTS: We found that the expression of hepatic LAL is lower in the liver fibrosis animal models than the control models. The reduced LAL expression is associated with HSCs activation, suggesting LAL is novel liver fibrosis biomarker. More importantly, our data showed that morroniside exerts anti-liver fibrosis effects in vitro. Mechanistic studies reveal that it binds to the hydrophobic sites of GATA3 and also reduces GATA3 expression, which increases LAL expression. CONCLUSIONS: This study, for the first time, suggests LAL is a novel biomarker for liver fibrosis. Besides, morroniside exerts its anti-liver fibrosis effects by targeting GATA3 and LAL and hence inhibits HSC activation. These findings provide strong scientific evidence to support the development of morroniside as novel alternative or complementary therapeutics for liver injury prevention and treatment.


Assuntos
Células Estreladas do Fígado , Esterol Esterase , Animais , Biomarcadores/metabolismo , Glicosídeos , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Esterol Esterase/metabolismo
20.
Ann Transl Med ; 10(6): 301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35433959

RESUMO

Background: Lung cancer is the leading cause of cancer-associated mortality worldwide, and most lung cancers are classified as non-small cell lung cancer (NSCLC). MiR-328 influence the progression of multiple tumors, but the role of miR-328-5p in NSCLC has not been elucidated. The aim of this study was to illuminate the oncogenic role and potential molecular mechanisms of the miR-328-5p and lysyl oxidase like 4 (LOXL4) in NSCLC. Methods: Expression of miR-328-5p was detected by real-time quantitative polymerase chain reaction (qRT-PCR) in tumor and non-tumor adjacent tissues. After Lentivirus-miR-328-5p was employed to intervene this miRNA in NSCLC cell lines, RT-qPCR was used to detect the expression levels of miR-328-5p. Cell Counting Kit-8 (CCK-8), cell colony formation, flow cytometry, wound healing, Transwell assays were used to determine the malignant phenotypes of NSCLC cells. Nude mice models of subcutaneous tumors were established to observe the effect of miR-328-5p on tumorigenesis. Targeting the 3'UTR of LOXL4 by miR-328-5p was verified by integrated analysis including transcriptome sequencing, dual-luciferase and western-blot assays. Results: High miR-328-5p level was observed in NSCLC cells from The Cancer Genome Atlas (TCGA) database and tumor tissues collected from NSCLC patients. Overexpressed miR-328-5p promoted NSCLC cell proliferation, survival, and migration, and promoted tumor growth in vivo. Knockdown of miR-328-5p suppressed tumorigenic activities. Transcriptome sequencing analysis revealed that LOXL4 was downregulated by miR-328-5p, which was confirmed by dual-luciferase reporter and western-blot assays. Conclusions: miR-328-5p showed targeted regulation of LOXL4 to promote cell proliferation and migration in NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...