Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 94(2): 503-511, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36702950

RESUMO

INTRODUCTION: Prenatal alcohol exposure (PAE) impairs offspring growth and cognition, and this is worsened by concurrent iron deficiency. Alcohol disrupts fetal iron metabolism and produces functional iron deficiency, even when maternal iron status is adequate. We used a mouse model of moderate PAE to investigate the mechanisms underlying this dysregulated iron status. METHODS: C57BL/6J female mice received 3 g/kg alcohol daily from embryonic day (E) 8.5-17.5 and were assessed at E17.5. RESULTS: Alcohol reduced fetal hemoglobin, hematocrit, and red blood cell counts, despite elevated erythropoietin production. Alcohol suppressed maternal hepcidin expression and the upstream iron-sensing BMP/SMAD pathway, consistent with its effects in the nonpregnant state. In contrast, alcohol elevated fetal hepcidin, although this was not accompanied by an upregulation of the BMP/SMAD or proinflammatory IL-6/STAT3 pathways. Fetal expression of hepatic genes contributing to hemoglobin synthesis and iron metabolism were unaffected by alcohol, whereas those affecting ribosome biogenesis were suppressed, suggesting a novel candidate effector for this fetal anemia. CONCLUSION: These data confirm and extend prior observations that PAE disrupts maternal and fetal iron metabolism and impairs the fetus's ability to regulate iron status. We propose this dysregulation increases gestational iron needs and represents a conserved response to PAE. IMPACT: Prenatal alcohol exposure causes a functional iron deficiency in a model that also impairs cognition in later life. Prenatal alcohol exposure causes fetal anemia. This fetal anemia is accompanied by elevated hepcidin and erythropoietin. Findings are consistent with prior observations that prenatal alcohol exposure increases maternal-fetal iron requirements during pregnancy.


Assuntos
Anemia , Eritropoetina , Transtornos do Espectro Alcoólico Fetal , Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Camundongos , Humanos , Animais , Feminino , Gravidez , Hepcidinas , Camundongos Endogâmicos C57BL , Anemia/complicações , Ferro , Etanol/toxicidade
2.
Nutrients ; 14(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458215

RESUMO

Prenatal alcohol exposure causes neurodevelopmental disability and is associated with a functional iron deficiency in the fetus and neonate, even when the mother consumes an apparently iron-adequate diet. Here, we test whether gestational administration of the clinically relevant iron supplement Fer-In-Sol mitigates alcohol's adverse impacts upon the fetus. Pregnant Long-Evans rats consumed an iron-adequate diet and received 5 g/kg alcohol by gavage for 7 days in late pregnancy. Concurrently, some mothers received 6 mg/kg oral iron. We measured maternal and fetal weights, hematology, tissue iron content, and oxidative damage on gestational day 20.5. Alcohol caused fetal anemia, decreased fetal body and brain weight, increased hepatic iron content, and modestly elevated hepatic malondialdehyde (p's < 0.05). Supplemental iron normalized this brain weight reduction in alcohol-exposed males (p = 0.154) but not female littermates (p = 0.031). Iron also reversed the alcohol-induced fetal anemia and normalized both red blood cell numbers and hematocrit (p's < 0.05). Iron had minimal adverse effects on the mother or fetus. These data show that gestational iron supplementation improves select fetal outcomes in prenatal alcohol exposure (PAE) including brain weight and hematology, suggesting that this may be a clinically feasible approach to improve prenatal iron status and fetal outcomes in alcohol-exposed pregnancies.


Assuntos
Ferro , Efeitos Tardios da Exposição Pré-Natal , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Etanol/farmacologia , Feminino , Feto , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Long-Evans
3.
Nutrients ; 14(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35268071

RESUMO

Prenatal alcohol exposure (PAE) causes fetal growth restrictions. A major driver of fetal growth deficits is maternal metabolic disruption; this is under-investigated following PAE. Untargeted metabolomics on the dam and fetus exposed to alcohol (ALC) revealed that the hepatic metabolome of ALC and control (CON) dams were distinct, whereas that of ALC and CON fetuses were similar. Alcohol reduced maternal hepatic glucose content and enriched essential amino acid (AA) catabolites, N-acetylated AA products, urea content, and free fatty acids. These alterations suggest an attempt to minimize the glucose gap by increasing gluconeogenesis using AA and glycerol. In contrast, ALC fetuses had unchanged glucose and AA levels, suggesting an adequate draw of maternal nutrients, despite intensified stress on ALC dams. Maternal metabolites including glycolytic intermediates, AA catabolites, urea, and one-carbon-related metabolites correlated with fetal liver and brain weights, whereas lipid metabolites correlated with fetal body weight, indicating they may be drivers of fetal weight outcomes. Together, these data suggest that ALC alters maternal hepatic metabolic activity to limit glucose availability, thereby switching to alternate energy sources to meet the high-energy demands of pregnancy. Their correlation with fetal phenotypic outcomes indicates the influence of maternal metabolism on fetal growth and development.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Aminoácidos/metabolismo , Animais , Feminino , Glucose/metabolismo , Fígado/metabolismo , Metaboloma , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo
4.
Alcohol Clin Exp Res ; 45(12): 2471-2484, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34697823

RESUMO

BACKGROUND: Fetal alcohol spectrum disorders (FASD) are preventable adverse outcomes consequent to prenatal alcohol exposure. Supplemental choline confers neuroprotection to the alcohol-exposed offspring, but its actions outside the brain are unclear. We previously reported that prenatal exposure of mice to 4.5 g/kg of alcohol decreased placental weight in females only, but decreased body weight and liver-to-body weight ratio and increased brain-to-body weight ratio in both sexes. Here we test the hypotheses that a lower alcohol dose will elicit similar outcomes, and that concurrent choline treatment will mitigate these outcomes. METHODS: Pregnant C57BL/6J mice were gavaged with alcohol (3 g/kg; Alc) or maltodextrin (MD) from embryonic day (E) 8.5-17.5. Some also received a subcutaneous injection of 100 mg/kg choline chloride (Alc + Cho, MD + Cho). Outcomes were evaluated on E17.5. RESULTS: Alc dams had lower gestational weight gain than MD; this was normalized by choline. In males, Alc decreased placental weight whereas choline increased placental efficiency, and Alc + Cho (vs. MD) tended to further reduce placental weight and increase efficiency. Despite no significant alcohol effects on these measures, choline increased fetal body weight but not brain weight, thus reducing brain-to-body weight ratio in both sexes. This ratio was also lower in the Alc + Cho (vs. MD) fetuses. Alc reduced liver weight and the liver-to-body weight ratio; choline did not improve these. Placental weight and efficiency correlated with litter size, whereas placental efficiency correlated with fetal morphometric measurements. CONCLUSIONS: Choline prevents an alcohol-induced reduction in gestational weight gain and fetal body weight and corrects fetal brain sparing, consistent with clinical findings of improvements in alcohol-exposed children born to mothers receiving choline supplementation. Importantly, we show that choline enhances placental efficiency in the alcohol-exposed offspring but does not normalize fetal liver growth. Our findings support choline supplementation during pregnancy to mitigate the severity of FASD and emphasize the need to examine choline's actions in different organ systems.


Assuntos
Colina/administração & dosagem , Transtornos do Espectro Alcoólico Fetal/prevenção & controle , Nootrópicos/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Desempenho Psicomotor/efeitos dos fármacos
5.
Metabolomics ; 17(2): 23, 2021 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-33550560

RESUMO

OBJECTIVE: Gestational disorders including preeclampsia, growth restriction and diabetes are characterized, in part, by altered metabolic interactions between mother and fetus. Understanding their functional relevance requires metabolic characterization under normotypic conditions. METHODS: We performed untargeted metabolomics on livers of pregnant, late-term C57Bl/6J mice (N = 9 dams) and their fetuses (pooling 4 fetuses/litter), using UPLC-MS/MS. RESULTS: Multivariate analysis of 730 hepatic metabolites revealed that maternal and fetal metabolite profiles were highly compartmentalized, and were significantly more similar within fetuses (ρaverage = 0.81), or within dams (ρaverage = 0.79), than within each maternal-fetal dyad (ρaverage = - 0.76), suggesting that fetal hepatic metabolism is under distinct and equally tight metabolic control compared with its respective dam. The metabolite profiles were consistent with known differences in maternal-fetal metabolism. The reduced fetal glucose reflected its limited capacity for gluconeogenesis and dependence upon maternal plasma glucose pools. The fetal decreases in essential amino acids and elevations in their alpha-keto acid carnitine conjugates reflects their importance as secondary fuel sources to meet fetal energy demands. Whereas, contrasting elevations in fetal serine, glycine, aspartate, and glutamate reflects their contributions to endogenous nucleotide synthesis and fetal growth. Finally, the elevated maternal hepatic lipids and glycerol were consistent with a catabolic state that spares glucose to meet competing maternal-fetal energy demands. CONCLUSIONS: The metabolite profile of the late-term mouse dam and fetus is consistent with prior, non-rodent analyses utilizing plasma and urine. These data position mouse as a suitable model for mechanistic investigation into how maternal-fetal metabolism adapts (or not) to gestational stressors.


Assuntos
Feto/metabolismo , Fígado/metabolismo , Metabolômica/métodos , Mães , Aminoácidos Essenciais , Animais , Carnitina , Cromatografia Líquida , Feminino , Gluconeogênese , Glucose/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Análise Multivariada , Plasma , Espectrometria de Massas em Tandem , Urina
6.
Sci Rep ; 11(1): 248, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420159

RESUMO

Prenatal alcohol exposure (PAE) causes permanent cognitive disability. The enteric microbiome generates microbial-dependent products (MDPs) that may contribute to disorders including autism, depression, and anxiety; it is unknown whether similar alterations occur in PAE. Using a mouse PAE model, we performed untargeted metabolome analyses upon the maternal-fetal dyad at gestational day 17.5. Hierarchical clustering by principal component analysis and Pearson's correlation of maternal plasma (813 metabolites) both identified MDPs as significant predictors for PAE. The majority were phenolic acids enriched in PAE. Correlational network analyses revealed that alcohol altered plasma MDP-metabolite relationships, and alcohol-exposed maternal plasma was characterized by a subnetwork dominated by phenolic acids. Twenty-nine MDPs were detected in fetal liver and sixteen in fetal brain, where their impact is unknown. Several of these, including 4-ethylphenylsulfate, oxindole, indolepropionate, p-cresol sulfate, catechol sulfate, and salicylate, are implicated in other neurological disorders. We conclude that MDPs constitute a characteristic biosignature that distinguishes PAE. These MDPs are abundant in human plasma, where they influence physiology and disease. Their altered abundance here may reflect alcohol's known effects on microbiota composition and gut permeability. We propose that the maternal microbiome and its MDPs are a previously unrecognized influence upon the pathologies that typify PAE.


Assuntos
Transtornos do Espectro Alcoólico Fetal/sangue , Transtornos do Espectro Alcoólico Fetal/microbiologia , Microbioma Gastrointestinal , Mães , Animais , Modelos Animais de Doenças , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Masculino , Camundongos , Gravidez
7.
Biol Sex Differ ; 11(1): 40, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690098

RESUMO

BACKGROUND: Individuals exposed to gestational stressors such as alcohol exhibit a spectrum of growth patterns, suggesting individualized responses to the stressors. We hypothesized that intrauterine growth responses to gestational alcohol are modified not only by the stressor's severity but by fetal sex and the placenta's adaptive capacity. METHODS: Pregnant C57BL/6J mice were assigned to one of three groups. Group 1 consumed a normal protein diet (18% protein by weight) and received 4.5 g alcohol/kg body weight (NP-Alc-8) or isocaloric maltodextrin (NP-MD-8) daily from embryonic day (E) 8.5-E17.5. Group 2 consumed the same diet but received alcohol (NP-Alc-13) or maltodextrin (NP-MD-13) daily from E13.5-E17.5. Group 3 consumed the same diet but containing a lower protein content (12% protein by weight) from E0.5 and also received alcohol (LP-Alc-8) or maltodextrin (LP-MD-8) daily from E8.5-E17.5. Maternal, placental, and fetal outcomes were assessed on E17.5 using 2-way ANOVA or mixed linear model. RESULTS: We found that intrauterine growth differed in the alcohol-exposed fetuses depending on sex and insult severity. Both NP-Alc-8 (vs. NP-MD-8) males and females had lower body weight and asymmetrical growth, but only NP-Alc-8 females had lower placental weight (P < 0.05). NP-Alc-13 (vs. NP-MD-13) females, but not their male littermates, had lower body weight (P = 0.019). Alcohol exposure beginning from E8.5 (vs. E13.5) decreased the ratio of fetal liver-to-body weight and increased the ratio of fetal brain-to-liver weight in both sexes (P < 0.05). LP-Alc-8 (vs. NP-MD-8) group had smaller litter size (P = 0.048), but the survivors had normal placental and body weight at E17.5. Nevertheless, LP-Alc-8 fetuses still showed asymmetrical growth. Correlation analyses reveal a relationship between litter size and placental outcomes, which were related to fetal outcomes in a sex-dependent manner, suggesting that the placenta may mediate the consequence of LP-Alc-altered litter size on fetal development. CONCLUSIONS: Our data indicate that the placenta is strongly involved in the fetal stress response and adapts in a sex-dependent fashion to support fetal development under the alcohol stressor. These variables may further influence the spectrum of intrauterine growth outcomes observed in those diagnosed with fetal alcohol spectrum disorder.


Assuntos
Proteínas Alimentares/administração & dosagem , Etanol/administração & dosagem , Transtornos do Espectro Alcoólico Fetal/patologia , Placenta/anatomia & histologia , Animais , Esquema de Medicação , Feminino , Desenvolvimento Fetal , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Fatores Sexuais
8.
Alcohol ; 84: 57-66, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31734307

RESUMO

Prenatal alcohol exposure (PAE) causes developmental abnormalities known as fetal alcohol spectrum disorder (FASD). Maternal iron status modulates the severity of these defects in the offspring. Because the placenta is central in supporting fetal development, we investigated whether maternal iron status similarly modulates alcohol's effects in the placenta. We hypothesized that PAE causes placental insufficiency by decreasing placental weight and efficiency, and we hypothesized that these are worsened by maternal iron deficiency (ID) and alleviated by dietary iron fortification (IF). We also determined whether altered placental iron flux and inflammatory balance contribute to placental insufficiency. Pregnant Long-Evans rats consumed an iron-deficient (ID; 2-6 ppm), iron-sufficient (IS; 100 ppm), or iron-fortified (IF; 500 ppm) diet. Alcohol (5 g/kg body weight) or isocaloric maltodextrin (MD) was gavaged daily from gestational day (GD) 13.5-19.5. Placental outcomes were evaluated on GD20.5. PAE reduced fetal weight (p < 0.0001), placental weight (p = 0.0324), and placental efficiency (p = 0.0043). PAE downregulated placental transferrin receptor (p = 0.0032); it also altered placental Il1b and Tnf expression and the Il6:Il10 ratio (p = 0.0337, 0.0300, and 0.0034, respectively) to generate a response favoring inflammation. ID-PAE further reduced fetal growth and placental efficiency and induced a heightened pro-inflammatory placental profile. IF did not rescue the alcohol-reduced fetal weight, but it normalized placental efficiency and decreased placental inflammation. These placental cytokines correlated with fetal and placental growth, and explained 45% of the variability in fetal weight and 20% of the variability in placental efficiency. In summary, alcohol induces placental insufficiency and is associated with a pro-inflammatory cytokine profile exacerbated by maternal ID and mitigated by maternal IF. Because the placenta is closely linked to intrauterine growth, the placental insufficiency reported here may correlate with the lower birth weights in a subgroup of individuals who experienced PAE.


Assuntos
Citocinas/metabolismo , Etanol/administração & dosagem , Transtornos do Espectro Alcoólico Fetal , Deficiências de Ferro , Ferro da Dieta/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Placentação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Inflamação , Gravidez , Ratos , Ratos Long-Evans
9.
Alcohol Clin Exp Res ; 43(11): 2332-2343, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31524964

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) causes long-term growth and neurodevelopmental deficits that are worsened by maternal iron deficiency (ID). In our preclinical rat model, PAE causes fetal anemia, brain ID, and elevated hepatic iron via increased maternal and fetal hepcidin synthesis. These changes are normalized by a prenatal iron-fortified (IF) diet. Here, we hypothesize that iron status and PAE dysregulate the major upstream pathways that govern hepcidin production-EPO/BMP6/SMAD and IL-6/JAK2/STAT3. METHODS: Pregnant, Long Evans rat dams consumed ID (2 to 6 ppm iron), iron-sufficient (IS, 100 ppm iron), or IF (500 ppm iron) diets and received alcohol (5 g/kg) or isocaloric maltodextrin daily from gestational days (GD) 13.5 to 19.5. Protein and gene expression were quantified in the 6 experimental groups at GD 20.5. RESULTS: PAE did not affect Epo or Bmp6 expression, but reduced p-SMAD1/5/8/SMAD1/5/8 protein ratios in both IS and ID maternal and fetal liver (all p's < 0.01). In contrast, PAE stimulated maternal hepatic expression of Il-6 (p = 0.03) and elevated p-STAT3/STAT3 protein ratios in both IS and ID maternal and fetal liver (all p's < 0.02). PAE modestly elevated maternal Il-1ß, Tnf-α, and Ifn-γ. Fetal cytokine responses to PAE were muted compared with dams, and PAE did not affect hepatic Il-6 (p = 0.78) in IS and ID fetuses. Dietary iron fortification sharply attenuated Il-6 expression in response to PAE, with IF driving a 150-fold decrease (p < 0.001) in maternal liver and a 10-fold decrease (p < 0.01) in fetal liver. The IF diet also normalized p-STAT3/STAT3 ratios in both maternal and fetal liver. CONCLUSIONS: These findings suggest that alcohol-driven stimulation of the IL-6/JAK2/STAT3 pathway mediates the elevated hepcidin observed in the PAE dam and fetus. Normalization of these signals by IF suggests that dysregulated hepcidin is driven by alcohol's disruption of the IL-6/JAK2/STAT3 pathway. Prenatal dietary IF represents a potential therapeutic approach for PAE that warrants further investigation.


Assuntos
Anemia Ferropriva/complicações , Etanol/efeitos adversos , Feto/efeitos dos fármacos , Interleucina-6/sangue , Efeitos Tardios da Exposição Pré-Natal/sangue , Fator de Transcrição STAT3/sangue , Animais , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Interleucina-6/metabolismo , Ferro da Dieta , Gravidez , Ratos , Ratos Long-Evans , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Nutr Biochem ; 72: 108210, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31473512

RESUMO

Despite participation in overlapping metabolic pathways, the relationship between choline and vitamin B-12 has not been well characterized especially during pregnancy. We sought to determine the effects of maternal choline supplementation on vitamin B-12 status biomarkers in human and mouse pregnancy, hypothesizing that increased choline intake would improve vitamin B-12 status. Associations between common genetic variants in choline-metabolizing genes and vitamin B-12 status biomarkers were also explored in humans. Healthy third-trimester pregnant women (n=26) consumed either 480 or 930 mg choline/day as part of a 12-week controlled feeding study. Wild-type NSA and Dlx3 heterozygous (Dlx3+/-) mice, which display placental insufficiency, consumed a 1×, 2× or 4× choline diet and were sacrificed at gestational days 15.5 and 18.5. Serum vitamin B-12, methylmalonic acid (MMA) and homocysteine were measured in all samples; holotranscobalamin (in humans) and hepatic vitamin B-12 (in mice) were also measured. The 2× choline supplementation for 12 weeks in pregnant women yielded higher serum concentrations of holotranscobalamin, the bioactive form of vitamin B-12 (~24%, P=.01). Women with genetic variants in choline dehydrogenase (CHDH) and betaine-homocysteine S-methyltransferase (BHMT) had higher serum MMA concentrations (~31%, P=.03) and lower serum holotranscobalamin concentrations (~34%, P=.03), respectively. The 4× choline dose decreased serum homocysteine concentrations in both NSA and Dlx3+/- mice (~36% and~43% respectively, P≤.015). In conclusion, differences in choline supply due to supplementation or genetic variation modulate vitamin B-12 status during pregnancy, supporting a functional relationship between these nutrients.


Assuntos
Colina/farmacologia , Fenômenos Fisiológicos da Nutrição Materna , Vitamina B 12/sangue , Adulto , Animais , Betaína-Homocisteína S-Metiltransferase/genética , Colina Desidrogenase/genética , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Homocisteína/sangue , Humanos , Ácido Metilmalônico/sangue , Camundongos Mutantes , Polimorfismo de Nucleotídeo Único , Gravidez , Terceiro Trimestre da Gravidez , Fatores de Transcrição/genética , Adulto Jovem
11.
Nutrients ; 11(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759768

RESUMO

Dlx3 (distal-less homeobox 3) haploinsufficiency in mice has been shown to result in restricted fetal growth and placental defects. We previously showed that maternal choline supplementation (4X versus 1X choline) in the Dlx3+/- mouse increased fetal and placental growth in mid-gestation. The current study sought to test the hypothesis that prenatal choline would modulate indicators of placenta function and development. Pregnant Dlx3+/- mice consuming 1X (control), 2X, or 4X choline from conception were sacrificed at embryonic (E) days E10.5, E12.5, E15.5, and E18.5, and placentas and embryos were harvested. Data were analyzed separately for each gestational day controlling for litter size, fetal genotype (except for models including only +/- pups), and fetal sex (except when data were stratified by this variable). 4X choline tended to increase (p < 0.1) placental labyrinth size at E10.5 and decrease (p < 0.05) placental apoptosis at E12.5. Choline supplementation decreased (p < 0.05) expression of pro-angiogenic genes Eng (E10.5, E12.5, and E15.5), and Vegf (E12.5, E15.5); and pro-inflammatory genes Il1b (at E15.5 and 18.5), Tnfα (at E12.5) and Nfκb (at E15.5) in a fetal sex-dependent manner. These findings provide support for a modulatory effect of maternal choline supplementation on biomarkers of placental function and development in a mouse model of placental insufficiency.


Assuntos
Apoptose/efeitos dos fármacos , Colina/farmacologia , Suplementos Nutricionais , Inflamação/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Insuficiência Placentária , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores , Colina/administração & dosagem , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
12.
Nutrients ; 10(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597262

RESUMO

The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p ≤ 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 × 10-4; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.


Assuntos
Colina/administração & dosagem , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Placenta/metabolismo , Placentação , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Sequência de Bases , Feminino , Genótipo , Masculino , Camundongos , MicroRNAs , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Sexuais
13.
J Nutr ; 147(11): 2083-2092, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28931587

RESUMO

Background: Fetal growth is dependent on placental nutrient supply, which is influenced by placental perfusion and transporter abundance. Previous research indicates that adequate choline nutrition during pregnancy improves placental vascular development, supporting the hypothesis that choline may affect placental nutrient transport.Objective: The present study sought to determine the impact of maternal choline supplementation (MCS) on placental nutrient transporter abundance and nutrient metabolism during late gestation.Methods: Female non-Swiss albino mice were randomly assigned to the 1×, 2×, or 4× choline diet (1.4, 2.8, and 5.6 g choline chloride/kg diet, respectively) 5 d before mating (n = 16 dams/group). The placentas and fetuses were harvested on gestational day (E) 15.5 and E18.5. The placental abundance of macronutrient, choline, and acetylcholine transporters and glycogen metabolic enzymes, and the placental concentration of glycogen were quantified. Choline metabolites and docosahexaenoic acid (DHA) concentrations were measured in the placentas and/or fetal brains. Data were stratified by gestational day and fetal sex and were analyzed by using mixed linear models.Results: At E15.5, MCS downregulated the placental transcript and protein abundance of glucose transporter 1 (GLUT1) (-40% to -73%, P < 0.05) and the placental transcript abundance of glycogen-synthesizing enzymes (-24% to -50%, P ≤ 0.05). At E18.5, MCS upregulated GLUT3 protein abundance (+55%, P = 0.016) and the transcript abundance of glycogen-synthesizing enzymes only in the female placentas (+36% to +60%, P < 0.05), resulting in a doubling (P = 0.01) of the glycogen concentration. A higher placental transcript abundance of the transporters for DHA, choline, and acetylcholine was also detected in response to MCS, consequently altering their concentrations in the placentas or fetal brains (P ≤ 0.05).Conclusions: These data suggest that MCS modulates placental nutrient transporter abundance and nutrient metabolism in late gestation of mouse pregnancy, with subsequent effects on nutrient supply for the developing fetus.


Assuntos
Colina/farmacologia , Placenta/efeitos dos fármacos , Placentação/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Ácidos Docosa-Hexaenoicos/análise , Feminino , Desenvolvimento Fetal , Regulação da Expressão Gênica , Idade Gestacional , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Glicogênio/análise , Masculino , Camundongos , Placenta/metabolismo , Gravidez
14.
Nutrients ; 9(7)2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718809

RESUMO

Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/- (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/- female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/- mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.


Assuntos
Colina/administração & dosagem , Suplementos Nutricionais , Insuficiência Placentária/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Genótipo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Knockout , Placenta/efeitos dos fármacos , Placenta/metabolismo , Placentação/efeitos dos fármacos , Gravidez , Resultado da Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Placenta ; 53: 57-65, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28487022

RESUMO

INTRODUCTION: Normal placental vascular development is influenced by inflammatory, angiogenic and apoptotic processes, which may be modulated by choline through its role in membrane biosynthesis, cellular signaling and gene expression regulation. The current study examined the effect of maternal choline supplementation (MCS) on placental inflammatory, angiogenic and apoptotic processes during murine pregnancy. METHOD: Pregnant dams were randomized to receive 1, 2 or 4 times (X) the normal choline content of rodent diets, and tissues were harvested on embryonic day (E) 10.5, 12.5, 15.5 or 18.5 for gene expression, protein abundance and immunohistochemical analyses. RESULTS: The choline-induced changes in the inflammatory and angiogenic markers were a function of fetal sex. Specifically, 4X (versus 1X) choline reduced the transcript (P ≤ 0.05) and protein (P ≤ 0.06) expression of TNF-a and IL-1ß in the male placentas at E10.5 and E18.5, respectively. In the female placentas, 4X (versus 1X) choline modulated the transcript expression of Il1b in a biphasic pattern with reduced Il1b at E12.5 (P = 0.045) and E18.5 (P = 0.067) but increased Il1b at E15.5 (P = 0.031). MCS also induced an upregulation of Vegfa expression in the female placentas at E15.5 (P = 0.034; 4X versus 2X) and E18.5 (P = 0.026; 4X versus 1X). MCS decreased (P = 0.011; 4X versus 1X) placental apoptosis at E10.5. Additionally, the luminal area of the maternal spiral arteries was larger (P ≤ 0.05; 4X versus 1X) in response to extra choline throughout gestation. DISCUSSION: MCS during murine pregnancy has fetal sex-specific effects on placental inflammation and angiogenesis, with possible consequences on placental vascular development.


Assuntos
Apoptose/efeitos dos fármacos , Colina/administração & dosagem , Lipotrópicos/administração & dosagem , Neovascularização Fisiológica/efeitos dos fármacos , Placenta/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Colina/farmacocinética , Citocinas/metabolismo , Suplementos Nutricionais , Avaliação Pré-Clínica de Medicamentos , Endoglina/metabolismo , Feminino , Lipotrópicos/farmacocinética , Fígado/metabolismo , Masculino , Camundongos , Placenta/irrigação sanguínea , Placenta/imunologia , Placenta/metabolismo , Gravidez , Distribuição Aleatória , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...