Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4454-4457, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946854

RESUMO

Multiple sclerosis (MS) is a non-traumatic, immune-mediated neurodegenerative disease of the central nervous system (CNS), affecting more than 2 million individuals globally and approximately one million in the United States [1], [2]. This autoimmune inflammatory disease of the CNS featuring both neuroinflammatory and neurodegenerative aspects [3], often results in mobility and cognitive impairment. Rehabilitation has been suggested as the best [4], and perhaps, one of few methods for restoring function in MS [5]. The goal of the present investigation is to examine the effects of 4 weeks of supervised, over-ground gait training using a robotic exoskeleton (RE) compared with a control condition (conventional gait therapy, CGT) in persons with MS with ambulatory and cognition disabilities. Four subjects (mean age=50 years, three females) with relapsing-remitting MS (RRMS) participated in this study and completed a total of eight sessions (1-hour/session) gait training in a standard therapy gym either using a RE supervised by an RE training physical therapist (PT) or with the CGT supervised by a PT. Outcome measures (walking speed and temporal-spatial parameters) were measured on a level surface without RE using an instrumented walkway, for both groups, pre- and post-intervention. The two participants in the RE group were also tested in the same testing environment, while wearing a RE pre- and post-intervention. Cognitive processing speed was assessed using the Symbol Digit Modalities Test (SDMT) pre- and post-intervention. Subjects in the RE group tested without a RE increased average walking speed, stride length, and step length with decreased stride width and step time bilaterally after the 8-session of RE training. The two participants in the CGT group only had modest improvements in walking performance. Furthermore, while the CGT group had no improvements in the processing speed (SDMT scores), an average of 80% improvement in the processing speed was noted in the RE group.


Assuntos
Cognição , Exoesqueleto Energizado , Esclerose Múltipla , Doenças Neurodegenerativas , Terapia por Exercício , Feminino , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/reabilitação , Caminhada
2.
Sci Rep ; 7(1): 12515, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970586

RESUMO

The development of in vitro artificial small intestines that realistically mimic in vivo systems will enable vast improvement of our understanding of the human gut and its impact on human health. Synthetic in vitro models can control specific parameters, including (but not limited to) cell types, fluid flow, nutrient profiles and gaseous exchange. They are also "open" systems, enabling access to chemical and physiological information. In this work, we demonstrate the importance of gut surface topography and fluid flow dynamics which are shown to impact epithelial cell growth, proliferation and intestinal cell function. We have constructed a small intestinal bioreactor using 3-D printing and polymeric scaffolds that mimic the 3-D topography of the intestine and its fluid flow. Our results indicate that TEER measurements, which are typically high in static 2-D Transwell apparatuses, is lower in the presence of liquid sheer and 3-D topography compared to a flat scaffold and static conditions. There was also increased cell proliferation and discovered localized regions of elevated apoptosis, specifically at the tips of the villi, where there is highest sheer. Similarly, glucose was actively transported (as opposed to passive) and at higher rates under flow.


Assuntos
Órgãos Artificiais , Mucosa Intestinal/crescimento & desenvolvimento , Intestino Delgado/crescimento & desenvolvimento , Impressão Tridimensional , Biomimética , Reatores Biológicos , Células CACO-2 , Proliferação de Células/genética , Células Epiteliais/química , Humanos , Mucosa Intestinal/química , Intestino Delgado/química , Engenharia Tecidual , Alicerces Teciduais/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...