Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 24(1): 172-183, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28801968

RESUMO

Recent observations confirm the rising temperatures of Atlantic waters transported into the Arctic Ocean via the West Spitsbergen Current (WSC). We studied the overall abundance and population structure of the North Atlantic keystone zooplankton copepod Calanus finmarchicus, which is the main prey for pelagic fish and some seabirds, in relation to selected environmental variables in this area between 2001 and 2011, when warming in the Arctic and Subarctic was particularly pronounced. Sampling within a 3-week time window each summer demonstrated that trends in the overall abundance of C. finmarchicus varied between years, with the highest values in "extreme" years, due to high numbers of nauplii and early copepodite stages in colder years (2001, 2004, 2010), and contrary to that, the fifth copepodite stage (C5) peaking in warm years (2006, 2007, 2009). The most influential environmental variable driving C. finmarchicus life cycle was temperature, which promoted an increased C5 abundance when the temperature was above 6°C, indicating earlier spawning and/or accelerated development, and possibly leading to their development to adults later in the summer and spawning for the second time, given adequate food supply. Based on the presented high interannual and spatial variability, we hypothesize that under a warmer climate, C. finmarchicus may annually produce two generations in the southern part of the WSC, what in turn could lead to food web reorganization of important top predators, such as little auks, and induce northward migrations of fish, especially the Norwegian herring.


Assuntos
Copépodes/crescimento & desenvolvimento , Cadeia Alimentar , Temperatura , Zooplâncton , Animais , Regiões Árticas , Mudança Climática , Oceanos e Mares , Estações do Ano
2.
Biol Lett ; 13(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29263132

RESUMO

Planktonic copepods of the genus Calanus play a central role in North Atlantic/Arctic marine food webs. Here, using molecular markers, we redrew the distributional ranges of Calanus species inhabiting the North Atlantic and Arctic Oceans and revealed much wider and more broadly overlapping distributions than previously described. The Arctic shelf species, C. glacialis, dominated the zooplankton assemblage of many Norwegian fjords, where only C. finmarchicus has been reported previously. In these fjords, high occurrences of the Arctic species C. hyperboreus were also found. Molecular markers revealed that the most common method of species identification, prosome length, cannot reliably discriminate the species in Norwegian fjords. Differences in degree of genetic differentiation among fjord populations of the two species suggested that C. glacialis is a more permanent resident of the fjords than C. finmarchicus We found no evidence of hybridization between the species. Our results indicate a critical need for the wider use of molecular markers to reliably identify and discriminate these morphologically similar copepod species, which serve as important indicators of climate responses.


Assuntos
Copépodes/classificação , Copépodes/genética , Animais , Regiões Árticas , Oceano Atlântico , Copépodes/anatomia & histologia , Marcadores Genéticos , Mutação INDEL , Análise de Sequência de DNA
3.
PLoS One ; 12(2): e0171715, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178320

RESUMO

A multi-scale approach was used to evaluate which spatial gradient of environmental variability is the most important in structuring zooplankton diversity in the West Spitsbergen Current (WSC). The WSC is the main conveyor of warm and biologically rich Atlantic water to the Arctic Ocean through the Fram Strait. The data set included 85 stratified vertical zooplankton samples (obtained from depths up to 1000 metres) covering two latitudinal sections (76°30'N and 79°N) located across the multi-path WSC system. The results indicate that the most important environmental variables shaping the zooplankton structural and functional diversity and standing stock variability are those associated with depth, whereas variables acting in the horizontal dimension are of lesser importance. Multivariate analysis of the zooplankton assemblages, together with different univariate descriptors of zooplankton diversity, clearly illustrated the segregation of zooplankton taxa in the vertical plane. The epipelagic zone (upper 200 m) hosted plentiful, Oithona similis-dominated assemblages with a high proportion of filter-feeding zooplankton. Although total zooplankton abundance declined in the mesopelagic zone (200-1000 m), zooplankton assemblages in that zone were more diverse and more evenly distributed, with high contributions from both herbivorous and carnivorous taxa. The vertical distribution of integrated biomass (mg DW m-2) indicated that the total zooplankton biomass in the epipelagic and mesopelagic zones was comparable. Environmental gradients acting in the horizontal plane, such as the ones associated with different ice cover and timing of the spring bloom, were reflected in the latitudinal variability in protist community structure and probably caused differences in succession in the zooplankton community. High abundances of Calanus finmarchicus in the WSC core branch suggest the existence of mechanisms advantageous for higher productivity or/and responsible for physical concentration of zooplankton. Our results indicate that regional hydrography plays a primary role in shaping zooplankton variability in the WSC on the way to the Arctic Ocean, with additional effects caused by biological factors related to seasonality in pelagic ecosystem development, resulting in regional differences in food availability or biological production between the continental slope and the deep ocean regions.


Assuntos
Ecossistema , Meio Ambiente , Zooplâncton , Animais , Regiões Árticas , Biodiversidade , Biomassa , Salinidade , Temperatura
4.
Sci Rep ; 7: 40850, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102329

RESUMO

The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m-2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.


Assuntos
Fitoplâncton/crescimento & desenvolvimento , Regiões Árticas , Compostos Inorgânicos de Carbono/análise , Eutrofização , Haptófitas/crescimento & desenvolvimento , Camada de Gelo , Nitratos/análise , Imagens de Satélites , Estações do Ano
5.
Polar Biol ; 38(2): 261-267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26069395

RESUMO

The complete diet composition structure of the most numerous planktivorous sea bird, little auk (Alle alle), in the European Arctic, is still not fully recognized. Although regular constituents of little auk chick diets, the copepods, Calanus glacialis and C. finmarchicus have been previously relatively well described, more taxa were frequent ingredients of the bird's meals. Therefore, the role of the little auks supplementary diet components (SDCs) at two colonies in the Svalbard Archipelago, Hornsund and Magdalenefjorden, in 2007-2009, is a main subject of this comparative study. Because the SDCs often consisted of scarce but large zooplankters, this investigation was focused on biomass as a proxy of the SDCs' energy input. Although the total biomass of the food delivered to chicks in both colonies was similar, in Magdalenefjorden, the proportion of SDCs was twice that found in Hornsund. The main SDCs in Hornsund were Decapoda larvae (with predominating Pagurus pubescens) and Thysanoessa inermis, whereas the main SDCs in Magdalenefjorden were C. hyperboreus and Apherusa glacialis. Previous investigations, which indicated lipid richness of SDCs, together with our ecological results from the colonies, suggest that this category might play a compensatory role in little auk chick diets. The ability to forage on diverse taxa may help the birds to adapt to ongoing Arctic ecosystem changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...