Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(23): 14570-14577, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702224

RESUMO

In this study, we demonstrate an integrated synthesis strategy, which is conducted by the thermochemical process, consisting of pre- and post-activation by thermal treatment and KOH activation for the reduction of graphite oxide. A large number of interconnected pore networks with a micro/mesoporous range were constructed on a framework of graphene layers with a specific surface area of up to 1261 m2 g-1. This suggests a synergistic effect of thermally exfoliated graphene oxide (TEGO) on the removal efficiency of volatile organic compounds by generating pore texture with aromatic adsorbates such as benzene, toluene, and o-xylene (denoted as BTX) from an inert gaseous stream concentration of 100 ppm. As a proof of concept, TEGO, as well as pre- and post-activated TEGO, were used as adsorbents in a self-designed BTX gas adsorption apparatus, which exhibited a high removal efficiency of up to 98 ± 2%. The distinctive structure of TEGO has a significant effect on removal performance, which will greatly facilitate the strategy of efficient VOC removal configurations.

2.
ACS Nano ; 15(2): 2839-2848, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33534540

RESUMO

Currently, researchers are paying much attention to the development of effective 3D graphene for applications in energy storage and environmental purification. Before commercialization, however, it is necessary to develop a method that allows for the large-scale production of such materials and enables good control over their structural and chemical properties. With this objective, we herein developed a simple method for the formation of large-scale (4 in. wafer) 3D graphene networks via the self-assembly of graphene sheets at a superheated liquid-vapor interface. The structural morphology of this porous network could be modified by controlling the vaporization rate, surface temperature of the target substrate, and amount of discharged colloids. The key mechanism behind this intriguing result was investigated by high-speed visualization of microdroplet behavior and extensive thermal analysis. This self-assembled 3D graphene had excellent electrical and mechanical properties. Our approach can be directly used for the mass production of graphene-based materials.

3.
RSC Adv ; 11(6): 3645-3654, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424277

RESUMO

During nearly 2 centuries of history in graphene researches, numerous researches were reported to synthesize graphene oxide (GO) and build a proper graphene assembly. However, tons of research prevail without verifying the reproducibility of GO that can be sensitively attributed by the graphite nature, and chemical processes. Here, the structure and chemistry of GO products were analyzed by considering parent graphite sources, and three different oxidation methods based on Hummer's method and the addition of H3PO4. The oxidation level of GO was characterized by monitoring the C/O and sp2 carbon ratio from X-ray photoelectroscopy (XPS) spectra. It was observed that the oxidant intercalation behavior was dependent on the morphological differences of graphite; synthetic and natural flake graphite were compared based on their origins in shape and size from different suppliers. Thermal reduction and exfoliation were applied to GO powders to prepare thermally expanded graphene oxide (TEGO) as a graphene assembly. Gas releases from the reduction of oxygen functional groups split layered GO structure and build a porous structure that varied specific surface area regarding oxidation degrees of GO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...