Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 115(4): 633-646, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38066571

RESUMO

Oncolytic virotherapy is an innovative approach for cancer treatment. However, recruitment of myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment (TME) after oncolysis-mediated local inflammation leads to tumor resistance to the therapy. Using the murine malignant mesothelioma model, we demonstrated that the in situ vaccinia virotherapy recruited primarily polymorphonuclear MDSCs (PMN-MDSCs) into the TME, where they exhibited strong suppression of cytotoxic T lymphocytes in a reactive oxygen species-dependent way. Single-cell RNA sequencing analysis confirmed the suppressive profile of PMN-MDSCs at the transcriptomic level and identified CXCR2 as a therapeutic target expressed on PMN-MDSCs. Abrogating PMN-MDSC trafficking by CXCR2-specific small molecule inhibitor during the vaccinia virotherapy exhibited enhanced antitumor efficacy in 3 syngeneic cancer models, through increasing CD8+/MDSC ratios in the TME, activating cytotoxic T lymphocytes, and skewing suppressive TME into an antitumor environment. Our results warrant clinical development of CXCR2 inhibitor in combination with oncolytic virotherapy.


Assuntos
Células Supressoras Mieloides , Terapia Viral Oncolítica , Vacínia , Animais , Camundongos , Linhagem Celular Tumoral , Células Supressoras Mieloides/patologia , Linfócitos T Citotóxicos , Microambiente Tumoral , Vacínia/patologia , Vaccinia virus
2.
Lancet Reg Health West Pac ; 32: 100660, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36591327

RESUMO

Background: The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the model city of universal masking of the world, has resulted in a major public health crisis. Although the third vaccination resulted in strong boosting of neutralization antibody, vaccine efficacy and correlate of immune protection against the major circulating Omicron BA.2 remain to be investigated. Methods: We investigated the vaccine efficacy against the Omicron BA.2 breakthrough infection among 470 public servants who had received different SARS-CoV-2 vaccine regimens including two-dose BNT162b2 (2 × BNT, n = 169), three-dose BNT162b2 (3 × BNT, n = 168), two-dose CoronaVac (2 × CorV, n = 34), three-dose CoronaVac (3 × CorV, n = 67) and third-dose BNT162b2 following 2 × CorV (2 × CorV+1BNT, n = 32). Humoral and cellular immune responses after three-dose vaccination were further characterized and correlated with clinical characteristics of BA.2 infection. Findings: During the BA.2 outbreak, 27.7% vaccinees were infected. The timely third-dose vaccination provided significant protection with lower incidence rates of breakthrough infections (2 × BNT 46.2% vs 3 × BNT 13.1%, p < 0.0001; 2 × CorV 44.1% vs 3 × CorV 19.4%, p = 0.003). Investigation of immune responses on blood samples derived from 90 subjects in three-dose vaccination cohorts collected before the BA.2 outbreak revealed that the third-dose vaccination activated spike (S)-specific memory B cells and Omicron cross-reactive T cell responses, which correlated with reduced frequencies of breakthrough infections and disease severity rather than with types of vaccines. Moreover, the frequency of S-specific activated memory B cells was significantly lower in infected vaccinees than uninfected vaccinees before vaccine-breakthrough infection whereas IFN-γ+ CD4 T cells were negatively associated with age and viral clearance time. Critically, BA.2 breakthrough infection boosted cross-reactive memory B cells with enhanced cross-neutralizing antibodies to Omicron sublineages, including BA.2.12.1 and BA.4/5, in all vaccinees tested. Interpretation: Our results imply that the timely third vaccination and immune responses are likely required for vaccine-mediated protection against Omicron BA.2 pandemic. Although BA.2 conferred the highest neutralization resistance compared with variants of concern tested before the emergence of BA.2.12.1 and BA.4/5, the third dose vaccination-activated S-specific memory B cells and Omicron cross-reactive T cell responses contributed to reduced frequencies of breakthrough infection and disease severity. Neutralizing antibody potency enhanced by BA.2 breakthrough infection in vaccinees with prior 3 doses of CoronaVac or BNT162b2 may reduce the risk of infection against ongoing BA.2.12.1 and BA.4/5. Funding: Hong Kong Research Grants Council Collaborative Research Fund, Health and Medical Research Fund, Wellcome Trust, Shenzhen Science and Technology Program, the Health@InnoHK, Innovation and Technology Commission of Hong Kong, China, National Program on Key Research Project, Emergency Key Program of Guangzhou Laboratory, donations from the Friends of Hope Education Fund and the Hong Kong Theme-Based Research Scheme.

3.
J Virol ; 96(7): e0216121, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297660

RESUMO

Vaccine-induced protective T cell immunity is necessary for HIV-1 functional cure. We previously reported that rhesus PD1-Gag-based DNA vaccination sustained simian-human immunodeficiency virus (SHIV) suppression by inducing effector-memory CD8+ T cells. Here, we investigated a human PD1-Gag-based DNA vaccine, namely, ICVAX, for clinical translation. PD1-based dendritic cell targeting and mosaic antigenic designs were combined to generate the ICVAX by fusing the human soluble PD1 domain with a bivalent HIV-1 Gag-p41 mosaic antigen. The mosaic antigen was cross-reactive with patients infected with B, CRF07/08_BC, and CRF01_AE variants. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses than mosaic Gag-p41 alone, and suppressed EcoHIV infection more efficiently. In macaques, ICVAX elicited polyfunctional effector-memory T cell responses that targeted multiple nonoverlapping epitopes of the Gag-p41 antigen. Furthermore, ICVAX manufactured following good manufacturing practices proved potent immunogenicity in macaques after biannual homologous vaccination, warranting clinical evaluation of ICVAX as an immunotherapy against HIV-1. IMPORTANCE This study presents that ICVAX, a PD1-based DNA vaccine against HIV-1, could induce broad and polyfunctional T cell responses against different HIV-1 subtypes. ICVAX encodes a recombinant antigen consisting of the human soluble PD1 domain fused with two mosaic Gag-p41 antigens. The mosaic antigens cover more than 500 HIV-1 strains circulating in China including the subtypes B/B', CRF01_AE, and CRF07/08_BC. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses, with better EcoHIV suppression than the nontargeting mosaic Gag-p41 DNA vaccine. Moreover, both lab-generated and GMP-grade ICVAX also elicited strong polyfunctional effector-memory T cell responses in rhesus macaques with good immunogenicity against multiple nonoverlapping epitopes of the Gag-p41 antigen. This study therefore highlights the great potential to translate the PD1-based DNA vaccine approach into clinical use, and opens up new avenues for alternative HIV-1 vaccine design for HIV-1 preventive and functional cure.


Assuntos
Infecções por HIV , HIV-1 , Vacinas Combinadas , Vacinas de DNA , Vacinas Virais , Vacinas contra a AIDS/imunologia , Animais , Antígenos Virais , Antígeno CD48 , Linfócitos T CD8-Positivos , Epitopos/imunologia , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Infecções por HIV/prevenção & controle , HIV-1/genética , Humanos , Macaca mulatta , Células T de Memória , Camundongos , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
4.
Nat Microbiol ; 2(10): 1389-1402, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28808299

RESUMO

The innate immune cells underlying mucosal inflammatory responses and damage during acute HIV-1 infection remain incompletely understood. Here, we report a Vδ2 subset of gut-homing γδ T cells with significantly upregulated Δ42PD1 (a PD1 isoform) in acute (~20%) HIV-1 patients compared to chronic HIV-1 patients (~11%) and healthy controls (~2%). The frequency of Δ42PD1+Vδ2 cells correlates positively with plasma levels of pro-inflammatory cytokines and fatty-acid-binding protein before detectable lipopolysaccharide in acute patients. The expression of Δ42PD1 can be induced by in vitro HIV-1 infection and is accompanied by high co-expression of gut-homing receptors CCR9/CD103. To investigate the role of Δ42PD1+Vδ2 cells in vivo, they were adoptively transferred into autologous humanized mice, resulting in small intestinal inflammatory damage, probably due to the interaction of Δ42PD1 with its cognate receptor Toll-like receptor 4 (TLR4). In addition, blockade of Δ42PD1 or TLR4 successfully reduced the cytokine effect induced by Δ42PD1+Vδ2 cells in vitro, as well as the mucosal pathological effect in humanized mice. Our findings have therefore uncovered a Δ42PD1-TLR4 pathway exhibited by virus-induced gut-homing Vδ2 cells that may contribute to innate immune activation and intestinal pathogenesis during acute HIV-1 infection. Δ42PD1+Vδ2 cells may serve as a target for the investigation of diseases with mucosal inflammation.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Imunidade nas Mucosas , Intestinos/imunologia , Mucosa/imunologia , Subpopulações de Linfócitos T/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Pequim , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linhagem Celular , Movimento Celular/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por HIV/patologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Intestino Delgado/imunologia , Intestino Delgado/patologia , Lipopolissacarídeos , Camundongos , Receptores CCR/metabolismo , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Subpopulações de Linfócitos T/virologia , Receptor 4 Toll-Like/imunologia
5.
Blood Adv ; 1(5): 306-318, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29296946

RESUMO

Individuals who have been preinfected by human cytomegalovirus (HCMV) are more prone to AIDS disease progression after subsequent HIV-1 infection but the underlying mechanism remains elusive. HCMV is a ubiquitous DNA virus that commonly establishes lifelong latent infection in CD34+ progenitor cells, where latency-specific HCMV genes may modulate host restriction to HIV-1 infection. To test this hypothesis, we studied progenitor cells that are known to resist replicative HIV-1 infection because of the intrinsic expression of host restriction factors. Interestingly, in primary CD34+ cells undergoing latent HCMV infection, an enhanced level of HIV-1 proviral DNA and replication was observed as measured by digital polymerase chain reaction, quantitative polymerase chain reaction, and Gag expression, and confirmed using dual-reporter pseudovirus encoding X4- or R5-tropic envelope and T-cell transfer. This phenomenon may be partially explained by the upregulation of HIV-1 entry coreceptors, including chemokine receptors CXCR4 and CCR5, but not of the primary receptor CD4. Furthermore, latent HCMV infection downregulated the expression of HIV-1 restriction factors SAMHD1, APOBEC3G, tetherin, and Mx2 in CD34+ progenitor cells, which may confer to enhanced HIV-1 infection. However, this enhancement was abrogated when ultraviolet-inactivated HCMV was used for comparison, suggesting that expression of latent HCMV genes is essential for this effect. Importantly, HCMV gB and HIV-1 p24 can be detected in the same cell by immunofluorescence and flow cytometry; therefore, the establishment of HCMV latency in CD34+ cells likely leads to host cell gene modulation that favors HIV-1 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...