Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 26: 101016, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516171

RESUMO

Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.

2.
J Hazard Mater ; 465: 133036, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000286

RESUMO

A highly efficient system incorporates the real-time visualization of the two toxic molecules (H2S and N2H4) and the recognition of corresponding transforms using a fluorescent sensor. In this paper, a dual-responsive probe (QS-DNP) based on methylquinolinium-salicyaldehyde-2,4-dinitrophenyl was developed that can simultaneously detect H2S and N2H4 at two independent fluorescent channels without signal crosstalk. QS-DNP showed excellent anti-interference, high selectivity, outstanding water solubility, low LOD values (H2S: 51 nM; N2H4: 40 nM), low cytotoxicity, and mitochondrial localization properties. The 2,4-dinitrophenyl site was sensitive to H2S, and the CC bridge was reactive to N2H4, with strong fluorescence at 680 and 488 nm, respectively. The wavelength gap between these two channels is 192 nm; verify that there is no signal crosstalk throughout detection. By this means, the probe was used to simultaneously detect H2S and N2H4 in real soil samples, food samples, and living cells. The endogenous H2S and N2H4 were monitored in HeLa cells and investigated the mitochondria organelle of living cells with a positive charge on QS-DNP. Overall, all results emphasize that the QS-DNP probe is a powerful tool for the simultaneous detection of H2S and N2H4 and presents a potential new sensing approach.


Assuntos
Corantes Fluorescentes , Hidrazinas , Sulfeto de Hidrogênio , Humanos , Células HeLa , Mitocôndrias , Espectrometria de Fluorescência
3.
ACS Omega ; 8(46): 44076-44085, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027389

RESUMO

Melanoma, a highly malignant and aggressive form of skin cancer, poses a significant global health threat, with limited treatment options and potential side effects. In this study, we developed a temperature-responsive hydrogel for skin regeneration with a controllable drug release. The hydrogel was fabricated using an interpenetrating polymer network (IPN) of N-isopropylacrylamide (NIPAAm) and poly(vinyl alcohol) (PVA). PVA was chosen for its adhesive properties, biocompatibility, and ability to address hydrophobicity issues associated with NIPAAm. The hydrogel was loaded with doxorubicin (DOX), an anticancer drug, for the treatment of melanoma. The NIPAAm-PVA (N-P) hydrogel demonstrated temperature-responsive behavior with a lower critical solution temperature (LCST) around 34 °C. The addition of PVA led to increased porosity and faster drug release. In vitro biocompatibility tests showed nontoxicity and supported cell proliferation. The N-P hydrogel exhibited effective anticancer effects on melanoma cells due to its rapid drug release behavior. This N-P hydrogel system shows great promise for controlled drug delivery and potential applications in skin regeneration and cancer treatment. Further research, including in vivo studies, will be essential to advance this hydrogel system toward clinical translation and impactful advancements in regenerative medicine and cancer therapeutics.

4.
Biofabrication ; 15(3)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37336204

RESUMO

Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology typically used in tissue engineering. However, 3D-printed row scaffolds manufactured using material extrusion techniques have low cell affinity on the surface and an insufficient biocompatible environment for desirable tissue regeneration. Thus, in this study, plasma treatment was used to render surface modification for enhancing the biocompatibility of 3D-printed scaffolds. We designed a plasma-based 3D printing system with dual heads comprising a plasma device and a regular 3D FDM printer head for a layer-by-layer nitrogen plasma treatment. Accordingly, the wettability, roughness, and protein adsorption capability of the 3D-printed scaffold significantly increased with the plasma treatment time. Hence, the layer-by-layer plasma-treated (LBLT) scaffold exhibited significantly enhanced cell adhesion and proliferation in anin vitroassay. Furthermore, the LBLT scaffold demonstrated a higher tissue infiltration and lower collagen encapsulation than those demonstrated by a non-plasma-treated scaffold in anin vivoassay. Our approach has great potential for various tissue-engineering applications via the adjustment of gas or precursor levels. In particular, this system can fabricate scaffolds capable of holding a biocompatible surface on an entire 3D-printed strut. Thus, our one-step 3D printing approach is a promising platform to overcome the limitations of current biocompatible 3D scaffold engineering.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Colágeno , Adesão Celular , Impressão Tridimensional
5.
Molecules ; 28(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110788

RESUMO

In this study, we aimed to develop natural and/or functional materials with antioxidant and anti-inflammatory effects. We obtained extracts from natural plants through an oil and hot-water extraction process and prepared an extract composite of an effective unsaturated fatty acid complex (EUFOC). Furthermore, the antioxidant effect of the extract complex was evaluated, and the anti-inflammatory effect was explored by assessing its inhibitory effect on nitric oxide production through its HA-promoting effect. We conducted a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay to evaluate the cell viability of the EUFOC, and the results showed that EUFOC was not cytotoxic at the test concentrations. In addition, it showed no endogenous cytotoxicity in HaCaT (human keratinocyte) cells. The EUFOC showed excellent 1,1-diphenyl-2-picrylhydrazyl- and superoxide-scavenging abilities. Moreover, it exerted an inhibitory effect on NO production at concentrations that did not inhibit cell viability. The secretion of all the cytokines was increased by lipopolysaccharide (LPS) treatment; however, this was inhibited by the EUFOC in a concentration-dependent manner. In addition, hyaluronic acid content was markedly increased by the EUFOC in a dose-dependent manner. These results suggest that the EUFOC has excellent anti-inflammatory and antioxidant properties, and hence, it can be used as a functional material in various fields.


Assuntos
Antioxidantes , Ácido Hialurônico , Humanos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Óxido Nítrico/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas
6.
Nanoscale ; 15(12): 5798-5808, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857681

RESUMO

Plant-derived extracellular nanovesicles contain RNA and proteins with unique and diverse pharmacological mechanisms. The extracellular nanovesicles encapsulating plant extracts resemble exosomes as they have a round, lipid bilayer morphology. Ginseng is anti-inflammatory, anti-cancer, immunostimulant, and osteogenic/anti-osteoporotic. Here, we confirmed that ginseng-derived extracellular nanovesicles (GDNs) inhibit osteoclast differentiation and elucidated the associated molecular mechanisms. We isolated GDNs by centrifugation with a sucrose gradient. We measured their dynamic light scattering and zeta potentials and examined their morphology by transmission electron microscopy. We used bone marrow-derived macrophages (BMMs) to determine the potential cytotoxicity of GDNs and establish their ability to inhibit osteoclast differentiation. The GDNs treatment maintained high BMM viability and proliferation whilst impeding osteoclastogenesis. Tartrate-resistant acid phosphatase and F-actin staining revealed that GDNs at concentrations >1 µg mL-1 strongly hindered osteoclast differentiation. Moreover, they substantially suppressed the RANKL-induced IκBα, c-JUN n-terminal kinase, and extracellular signal-regulated kinase signaling pathways and the genes regulating osteoclast maturation. The GDNs contained elevated proportions of Rb1 and Rg1 ginsenosides and were more effective than either of them alone or in combination at inhibiting osteoclast differentiation. In vivo bone analysis via microcomputerized tomography, bone volume/total volume ratios, and bone mineral density and bone cavity measurements demonstrated the inhibitory effect of GDNs against osteoclast differentiation in lipopolysaccharide-induced bone resorption mouse models. The results of this work suggest that GDNs are anti-osteoporotic by inhibiting osteoclast differentiation and are, therefore, promising for use in the clinical prevention and treatment of bone loss diseases.


Assuntos
Reabsorção Óssea , Exossomos , Panax , Animais , Camundongos , Osteoclastos , Exossomos/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Ultracentrifugação , Diferenciação Celular
7.
Trends Biotechnol ; 41(5): 632-652, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36266101

RESUMO

Severe skeletal muscle injuries are a lifelong trauma with limited medical solutions. Significant progress has been made in developing in vitro surrogates for treating such trauma. However, more attention is needed when translating these approaches to the clinic. In this review, we survey the potential of tissue-engineered surrogates in promoting muscle healing, by critically analyzing data from recent preclinical models. The therapeutic advantages provided by a combination of different biomaterials, cell types, and biochemical mediators are discussed. Current therapies on muscle healing are also summarized, emphasizing their main advantages and drawbacks. We also discuss previous and ongoing clinical trials as well as highlighting future directions for the field.


Assuntos
Músculo Esquelético , Engenharia Tecidual , Materiais Biocompatíveis/metabolismo , Regeneração
10.
Commun Biol ; 5(1): 1270, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402892

RESUMO

Here we show that intradermal injection of keratin promotes hair growth in mice, which results from extracellular interaction of keratin with hair forming cells. Extracellular application of keratin induces condensation of dermal papilla cells and the generation of a P-cadherin-expressing cell population (hair germ) from outer root sheath cells via keratin-mediated microenvironmental changes. Exogenous keratin-mediated hair growth is reflected by the finding that keratin exposure from transforming growth factor beta 2 (TGFß2)-induced apoptotic outer root sheath cells appears to be critical for dermal papilla cell condensation and P-cadherin-expressing hair germ formation. Immunodepletion or downregulation of keratin released from or expressed in TGFß2-induced apoptotic outer root sheath cells negatively influences dermal papilla cell condensation and hair germ formation. Our pilot study provides an evidence on initiating hair regeneration and insight into the biological function of keratin exposed from apoptotic epithelial cells in tissue regeneration and development.


Assuntos
Proteínas do Citoesqueleto , Queratinas , Camundongos , Animais , Projetos Piloto , Cabelo , Caderinas
11.
Pharmacol Res ; 184: 106423, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36064078

RESUMO

BMP2 is clinically used as an ectopic bone inducer and plays a significant role in bone development, formation, and diseases. Chitinase 3-like 1 protein (Chi3L1) is found in the skeletal system. However, Chi3L1-mediated bone metabolism and aging-related bone erosion via BMP2 signaling have not yet been demonstrated. Herein, Chi3L1 increased BMP2-induced osteoblast differentiation in mesenchymal precursor cells and human primary osteoblasts. Chi3L1KO(-/-) showed abnormal bone development, and primary osteoblasts isolated from Chi3L1KO(-/-) exhibited impaired osteoblast differentiation and maturation. Chi3L1 also potentiated BMP2 signaling and RUNX2 expression in primary osteoblasts. Chi3L1 interacted with BMPRIa, which increased the surface expression of BMPRIa and promoted BMP2 signaling to induce osteoblast differentiation. Chi3L1KO(-/-) mice showed bone formation reduced with a decrease in RUNX2 expression in calvarial defects. Chi3L1KO(-/-) mice exhibited aging-related osteoporotic bone loss with decreases in the levels of RUNX2 and OPG, while serum PYD level and osteoclast number increased. Chi3L1 increased OPG via non-canonical BMP2 signaling in osteoblasts, which suppressed osteoclastogenesis in BMMs. Furthermore, ROC analysis showed that serum Chi3L1 level clinically decreased in osteoporosis patients. Our findings demonstrate that Chi3L1 promotes bone formation, suppresses osteoclastogenesis, and prevents aging-related osteoporosis.


Assuntos
Quitinases , Osteoporose , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Quitinases/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Camundongos , Osteoblastos/metabolismo , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
12.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955423

RESUMO

Triterpenes are a diverse group of natural compounds found in plants. Soyasapogenol B (SoyB) from Arachis hypogaea (peanut) has various pharmacological properties. This study aimed to elucidate the pharmacological properties and mechanisms of SoyB in bone-forming cells. In the present study, 1-20 µM of SoyB showed no cell proliferation effects, whereas 30-100 µM of SoyB increased cell proliferation in MC3T3-E1 cells. Next, osteoblast differentiation was analyzed, and it was found that SoyB enhanced ALP staining and activity and bone mineralization. SoyB also induced RUNX2 expression in the nucleus with the increased phosphorylation of Smad1/5/8 and JNK2 during osteoblast differentiation. In addition, SoyB-mediated osteoblast differentiation was not associated with autophagy and necroptosis. Furthermore, SoyB increased the rate of cell migration and adhesion with the upregulation of MMP13 levels during osteoblast differentiation. The findings of this study provide new evidence that SoyB possesses biological effects in bone-forming cells and suggest a potentially beneficial role for peanut-based foods.


Assuntos
Arachis , Triterpenos , Autofagia , Diferenciação Celular , Linhagem Celular , Necroptose , Ácido Oleanólico/análogos & derivados , Osteoblastos/metabolismo , Saponinas , Triterpenos/metabolismo , Triterpenos/farmacologia
13.
J Cell Mol Med ; 26(16): 4520-4529, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35796406

RESUMO

Scoparone (SCOP), an active and efficient coumarin compound derived from Artemisia capillaris Thunb, has been used as a traditional Chinese herbal medicine. Herein, we investigated the effects of SCOP on the osteogenic processes using MC3T3-E1 pre-osteoblasts in in vitro cell systems. SCOP (C11 H10 O4 , > 99.17%) was purified and identified from A. capillaries. SCOP (0.1 to 100 µM concentrations) did not have cytotoxic effects in pre-osteoblasts; however, it promoted alkaline phosphatase (ALP) staining and activity, and mineralized nodule formation under early and late osteogenic induction. SCOP elevated osteogenic signals through the bone morphogenetic protein 2 (BMP2)-Smad1/5/8 pathway, leading to the increased expression of runt-related transcription factor 2 (RUNX2) with its target protein, matrix metallopeptidase 13 (MMP13). SCOP also induced the non-canonical BMP2-MAPKs pathway, but not the Wnt3a-ß-catenin pathway. Moreover, SCOP promoted autophagy, migration and adhesion under the osteogenic induction. Overall, the findings of this study demonstrated that SCOP has osteogenic effects associated with cell differentiation, adhesion, migration, autophagy and mineralization.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Autofagia , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cumarínicos/farmacologia , Osteoblastos/metabolismo
14.
J Biomed Mater Res A ; 110(10): 1655-1668, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35678701

RESUMO

The treatment of skeletal muscle defects is still a topic of noteworthy concern since surgical intervention is not capable of recovering muscle function. Herein, we propose myoblasts laden in laminin-inspired biofunctionalized gellan gum hydrogels as promising tissue-engineered skeletal muscle surrogates. Gellan gum-based hydrogels were developed by combining native gellan gum (GG) and GG tethered with laminin-derived peptides (CIKVAVS (V), KNRLTIELEVRTC (T) or RKRLQVQLSIRTC (Q)), using different polymer content (0.75%-1.875%). Hydrogels were characterized in terms of compressive modulus, molecules trafficking, and C2C12 adhesion. Hydrogels with higher polymeric content (1.125%-1.875%) showed higher stiffness whereas hydrogels with lower polymer content (0.75%-1.125%) showed higher fluorescein isothiocyanate-dextran molecules diffusion. Cell spreading was achieved regardless of the laminin-derived peptide but preferred in hydrogels with higher polymer content (1.125%-1.875%). Taken together, hydrogels with 1.125% of polymer content were selected for printability analysis. GG-based inks showed a non-newtonian, shear-thinning, and thixotropic behavior suitable for printing. Accordingly, all inks were printable, but inks tethered with T and Q peptides presented some signs of clogging. Cell viability was affected after printing but increased after 7 days of culture. After 7 days, cells were spreading but not showing significant signs of cell-cell communications. Therefore, cell density was increased, thus, myocytes loaded in V-tethered GG-based inks showed higher cell-cell communication, spreading morphology, and alignment 7, 14 days post-printing. Overall, myoblasts laden in laminin-inspired biofunctionalized GG-based hydrogels are a promising skeletal muscle surrogate with the potential to be used as in vitro model or explored for further in vivo applications.


Assuntos
Bioimpressão , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Laminina/farmacologia , Peptídeos/farmacologia , Polímeros , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Engenharia Tecidual
15.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336325

RESUMO

Heart rate variability (HRV) is closely related to changes in the autonomic nervous system (ANS) associated with stress and pain. In this study, we investigated whether HRV could be used to assess cancer pain in mice with peritoneal metastases. At 12 days after cancer induction, positive indicators of pain such as physiological characteristics, appearance, posture, and activity were observed, and time- and frequency-domain HRV parameters such as mean R-R interval, square root of the mean squared differences of successive R-R intervals, and percentage of successive R-R interval differences greater than 5 ms, low frequency (LF), high frequency (HF), and ratio of LF and HF power, were found to be significantly decreased. These parameters returned to normal after analgesic administration. Our results indicate that overall ANS activity was decreased by cancer pain and that HRV could be a useful tool for assessing pain.


Assuntos
Dor do Câncer , Neoplasias Peritoneais , Animais , Sistema Nervoso Autônomo , Frequência Cardíaca/fisiologia , Camundongos
16.
Am J Chin Med ; 50(1): 295-311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34931585

RESUMO

Human oral squamous cell carcinomas (OSCCs) have high cancer mortality and a 5-year survival rate lower than that of most other carcinomas. New therapeutic strategies are required for the treatment and prevention against OSCCs. An approach to cancer therapy using plant-derived natural compounds has been actively in progress as a trend. Falcarindiol (FALC), or its isolated form Ostericum koreanum Kitagawa (O. koreanum), is present in many food and dietary plants, especially in carrots, and this compound has a variety of beneficial effects. However, biological activity of FALC has not been reported in OSCCs yet. This study aimed to demonstrate the antitumor effects of FALC against OSCCs, YD-10B cells. In this study, FALC was selected as a result of screening for compounds isolated from various natural products in YD-10B cells. FALC suppressed cell growth, and FALC-induced apoptotic cell death was mainly accompanied by the dephosphorylation of PI3K, AKT, mTOR, and p70S6K. The apoptotic cell death was also associated with autophagy as evidenced by the expression of Beclin-1, the conversion of LC3-II, and the formation of autophagosome. FALC-induced autophagy was accompanied by MAPKs including ERK1/2 and p38. Furthermore, FALC caused the antimetastatic effects by inhibiting the migration and invasion of YD-10B cells. Taken together, the findings suggest the potential value of FALC as a novel candidate for therapeutic strategy against OSCCs.


Assuntos
Morte Celular Autofágica , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Di-Inos , Álcoois Graxos , Humanos , Neoplasias Bucais/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa , Serina-Treonina Quinases TOR/metabolismo
17.
Biomedicines ; 9(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34944581

RESUMO

Bone defects can occur from many causes, including disease or trauma. Bone graft materials (BGMs) have been used to fill damaged areas for the reconstruction of diseased bone tissues since they are cost effective and readily available. However, BGMs quickly disperse around the tissue area, which ultimately leads to it migrating away from the defect after transplantation. We tested chitosan hydrogels as a useful carrier to hold BGMs in the transplantation area. In this study, we synthesized succinylated chitosan (SCS)-based hydrogels with a high decomposition rate and excellent biocompatibility. We confirmed that BGMs were well distributed inside the SCS hydrogel. The SCS-B hydrogel showed a decrease in mechanical properties, such as compressive strength and Young's modulus, as the succinylation rate increased. SCS-B hydrogels also exhibited a high cell growth rate and bone differentiation rate. Moreover, the in vivo results showed that the SCS hydrogel resorbed into the surrounding tissues while maintaining the BGMs in the transplantation area for up to 6 weeks. These data support the idea that SCS hydrogel can be useful as a bioactive drug carrier for a broad range of biomedical applications.

18.
Am J Chin Med ; 49(8): 2017-2031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34961419

RESUMO

Osteosarcoma is the most common malignant bone-forming tumor, wherein most patients with high grade osteosarcomas are treated with chemotherapy. Despite this, survival for metastatic or relapsed osteosarcoma patients has remained at an overall 5-year survival rate of 20%. In particular, the extracts of Corylopsis coreana (Korean winter hazel), a cultivated woody plant in South Korea, have shown beneficial anti-inflammatory, anti-oxidative, anti-osteoclastic, and antihyperuricemic properties. Therefore, this study aimed to demonstrate the antitumor activities and underlying mechanism of 11-O-Galloyl bergenin (OGAL) isolated from Corylopsis coreanas leaves in human osteosarcoma cells. Herein, we found that OGAL inhibited MG63 cell proliferation and induced cellular apoptosis as evidenced by cleaved-PARP, cleaved-caspase 3, TUNEL-positive cells, and Annexin V-positive cells. Specifically, OGAL-induced apoptosis was accompanied by p53 and p21 upregulation, BAX expression, and decreased Bcl-2 and cdk2. Moreover, OGAL induced autophagy via AKT inactivation, LC3II upregulation, and MG63 cell autophagosome formation. OGAL-induced autophagy was also accompanied by increased p38 phosphorylation, whereas JNK and ERK1/2 activities were found to be unaffected upon examining the MAPK signaling pathway. Furthermore, wound healing and Boyden chamber assays showed that OGAL suppressed MG63 cell migration and invasion. Given these findings, this study provided evidence that OGAL has antitumor effects by apoptosis and autophagy enhancement through increased p53, AKT, and p38 signaling, suggesting that OGAL may be a potential therapeutic strategy for osteosarcoma treatment.


Assuntos
Recidiva Local de Neoplasia , Osteossarcoma , Apoptose , Autofagia , Benzopiranos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Osteossarcoma/tratamento farmacológico , Folhas de Planta , Espécies Reativas de Oxigênio
19.
ACS Omega ; 6(42): 28307-28315, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723027

RESUMO

Despite advances in the bio-tissue engineering area, the technical basis to directly load hydrophobic drugs on chitosan (CTS) electrospun nanofibers (ENs) has not yet been fully established. In this study, we fabricated CTS ENs by using an electrospinning (ELSP) system, followed by surface modification using succinyl-beta-cyclodextrin (ß-CD) under mild conditions. The ß-CD-modified CTS (ßCTS) ENs had slightly increased hydrophobicity compared to pristine CTS ENs as well as decreased residual amine content on the surface. Through FTIR spectroscopy and thermogravimetric analysis (TGA), we characterized the surface treatment physiochemically. In the drug release test, we demonstrated the stable and sustained release of a hydrophobic drug (e.g., dexamethasone) loaded on ß-CD ENs. During in vitro biocompatibility assessments, the grafting of ß-CD was shown to not reduce cell viability compared to pristine CTS ENs. Additionally, cells proliferated well on ß-CD ENs, and this was confirmed by F-actin fluorescence staining. Overall, the material and strategies developed in this study have the potential to load a wide array of hydrophobic drugs. This could be applied as a drug carrier for a broad range of tissue engineering applications.

20.
Am J Cancer Res ; 11(10): 4919-4930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765300

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and common malignant neoplasm. Nevertheless, a 5-year survival rate of patients with GBM has remained below 5%. Artemisia princeps PAMPANINI, used as a food and traditional medicine, have shown beneficial properties including anti-inflammatory, anti-oxidative, and anti-cancer activities. Thus, this study aimed to investigate biological mechanism of a bioactive compound, jaceosidin (JAC), isolated from A. princeps in human GBM T98G cells. Herein, as a result of analysis in terms of cancer survival and death, we found that JAC significantly reduced cell survival against T98G cells. In addition, JAC increased apoptotic cell death via changes on morphological and molecular phenotypes in T98G cells as evidenced by cellular shapes and DNA fragmentation. The apoptotic cell death was confirmed by the cleavage of caspase-3 and PARP, the downregulation of survivin and Bcl-2. Moreover, JAC decreased the expression of cyclinD1 and Cdks and increased the phosphorylation of EKR, JNK, and p38 MAPKs. Specifically, JAC suppressed the PI3K/AKT signaling and its downstream molecules including p70S6, GSK3ß, and ß-catenin. In addition, as a result of analysis in terms of metastasis using wound healing and Boyden chamber assays, JAC showed anti-migrative and anti-invasive activities. Finally, we analyzed in terms of autophagy and necroptosis that are modes of programmed cell survival and death different from apoptosis in T98G cells. We found that JAC inhibited autophgic regulatory proteins including Beclin-1, Atgs, and LC3A/B, thereby reducing autophagic-mediated cell survival, whereas JAC did not affect phosphorylation of key proteins in necroptosis, especially MLKL. Given these findings, our results provided novel evidences on the biological mechanisms of JAC in T98G cells, suggesting that JAC may be a therapeutic agent for patients with GBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA