Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1185, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332123

RESUMO

Recently, the cost of lithium-ion batteries has risen as the price of lithium raw materials has soared and fluctuated. Notably, the highest cost of lithium production comes from the impurity elimination process to satisfy the battery-grade purity of over 99.5%. Consequently, re-evaluating the impact of purity becomes imperative for affordable lithium-ion batteries. In this study, we unveil that a 1% Mg impurity in the lithium precursor proves beneficial for both the lithium production process and the electrochemical performance of resulting cathodes. This is attributed to the increased nucleation seeds and unexpected site-selective doping effects. Moreover, when extended to an industrial scale, low-grade lithium is found to reduce production costs and CO2 emissions by up to 19.4% and 9.0%, respectively. This work offers valuable insights into the genuine sustainability of lithium-ion batteries.

3.
Adv Mater ; 35(4): e2203431, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35816086

RESUMO

As a new class of materials, implantable flexible electrical conductors have recently been developed and applied to bioelectronics. An ideal electrical conductor requires high conductivity, tissue-like mechanical properties, low toxicity, reliable adhesion to biological tissues, and the ability to maintain its shape in wet physiological environments. Despite significant advances, electrical conductors that satisfy all these requirements are insufficient. Herein, a facile method for manufacturing a new conductive hydrogels through the simultaneous exfoliation of graphite and polymerization of zwitterionic monomers triggered by microwave irradiation is introduced. The mechanical properties of the obtained conductive hydrogel are similar to those of living tissue, which is ideal as a bionic adhesive for minimizing contact damage due to mechanical mismatches between hard electronics and soft tissues. Furthermore, it exhibits excellent adhesion performance, electrical conductivity, non-swelling, and high conformability in water. Excellent biocompatibility of the hydrogel is confirmed through a cytotoxicity test using C2C12 cells, a biocompatibility test on rat tissues, and their histological analysis. The hydrogel is then implanted into the sciatic nerve of a rat and neuromodulation is demonstrated through low-current electrical stimulation. This hydrogel demonstrates a tissue-like extraneuronal electrode, which possesses high conformability to improve the tissue-electronics interfaces, promising next-generation bioelectronics applications.


Assuntos
Adesivos , Hidrogéis , Ratos , Animais , Eletrônica/métodos , Eletrodos , Próteses e Implantes , Condutividade Elétrica
4.
JACS Au ; 2(11): 2491-2500, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465547

RESUMO

Growing the hydrogen economy requires improving the stability, efficiency, and economic value of water-splitting technology, which uses an intermittent power supply from renewable energy sources. Alkaline water electrolysis systems face a daunting challenge in terms of stabilizing hydrogen production under the condition of transient start-up/shut-down operation. Herein, we present a simple but effective solution for the electrode degradation problem induced by the reverse-current under transient power condition based on a fundamental understanding of the degradation mechanism of nickel (Ni). It was clearly demonstrated that the Ni cathode was irreversibly oxidized to either the ß-Ni(OH)2 or NiO phases by the reverse-current flow after shut-down, resulting in severe electrode degradation. It was also determined that the potential of the Ni electrode should be maintained below 0.6 VRHE under the transient condition to keep a reversible nickel phase and an activity for the hydrogen evolution reaction. We suggest a cathodic protection approach in which the potential of the Ni electrode is maintained below 0.6 VRHE by the dissolution of a sacrificial metal to satisfy the above requirement; irreversible oxidization of the cathode is prevented by connecting a sacrificial anode to the Ni cathode. In the accelerated durability test under a simulated reverse-current condition, lead was found to be the most promising candidate for the sacrificial metal, as it is cost effective and demonstrates chemical stability in the alkaline media. A newly defined metric, a reverse-current stability factor, highlights that our system for protecting the cathode against the reverse-current is an efficient strategy for stable and cost effective alkaline hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...