Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Evol ; 10(1): veae014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455682

RESUMO

Clade 2.3.4.4b highly pathogenic avian influenza A (HPAI) viruses have been detected in wild birds worldwide, causing recurrent outbreaks since 2016. During the winter of 2021-2022, we detected one H5N8 and forty-three H5N1 clade 2.3.4.4b HPAI viruses from wild birds in South Korea. Phylogenetic analysis revealed that HA gene of H5N1 viruses was divided into two genetically distinct groups (N1.G1 and N1.G2). Bayesian phylodynamic analysis demonstrated that wild birds play a vital role in viral transmission and long-term maintenance. We identified five genotypes (N1.G1.1, N1.G2, N1.G2.1, N1.G2.2, and N1.G2.2.1) having distinct gene segment constellations most probably produced by reassortments with low-pathogenic avian influenza viruses. Our results suggest that clade 2.3.4.4b persists in wild birds for a long time, causing continuous outbreaks, compared with previous clades of H5 HPAI viruses. Our study emphasizes the need for enhancing control measures in response to the changing viral epidemiology.

2.
Infect Genet Evol ; 118: 105565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309607

RESUMO

Infectious bronchitis virus (IBV), an avian coronavirus, has caused considerable damage to the poultry industry. In Korea, indigenous KM91-like and newly introduced QX-like lineages belonging to the GI-19 lineage have been prevalent despite constant vaccination. In this study, complete genome sequences of 23 IBV isolates in Korea from 2010 to 2020 were obtained using next-generation sequencing, and their phylogenetic relationship and recombination events were analyzed. Phylogenetic analysis based on the S1 gene showed that all isolates belonged to the GI-19 lineage and were divided into five subgroups (KM91-like, K40/09-like, and QX-like II to IV). Among the 23 isolates, 14 recombinants were found, including frequent recombination between KM91-like and QX-like strains. In addition, it was observed that other lineages, such as GI-1, GI-13, and GI-16, were involved in recombination. Most recombination breakpoints were detected in the ORF1ab gene, particularly nsp3. However, when considering the size of each genome, recombination occurred more frequently in the 3a, E and 5a genes. Taken together, genetic recombination frequently occurred throughout the entire genome between various IBV strains in Korea, including live attenuated vaccine strain. Our study suggests the necessity of further research on the contribution of recombination of genomes outside the spike region to the biological characteristics of IBV.


Assuntos
Gammacoronavirus , Vírus da Bronquite Infecciosa , Filogenia , República da Coreia/epidemiologia , Vírus da Bronquite Infecciosa/genética , Vacinas Atenuadas , Recombinação Genética
3.
Emerg Infect Dis ; 30(2): 299-309, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215495

RESUMO

During October 2022-March 2023, highly pathogenic avian influenza (HPAI) A(H5N1) clade 2.3.4.4b virus caused outbreaks in South Korea, including 174 cases in wild birds. To understand the origin and role of wild birds in the evolution and spread of HPAI viruses, we sequenced 113 HPAI isolates from wild birds and performed phylogenetic analysis. We identified 16 different genotypes, indicating extensive genetic reassortment with viruses in wild birds. Phylodynamic analysis showed that the viruses were most likely introduced to the southern Gyeonggi-do/northern Chungcheongnam-do area through whooper swans (Cygnus cygnus) and spread southward. Cross-species transmission occurred between various wild bird species, including waterfowl and raptors, resulting in the persistence of HPAI in wild bird populations and further geographic spread as these birds migrated throughout South Korea. Enhanced genomic surveillance was an integral part of the HPAI outbreak response, aiding in timely understanding of the origin, evolution, and spread of the virus.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Animais Selvagens , Aves , Influenza Humana/epidemiologia , Patos , República da Coreia/epidemiologia
4.
Virology ; 590: 109945, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064871

RESUMO

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergency of various lineages through mutations and recombination. In the Delta lineage, we identified recombination events in the ORF1a gene, which divided the Delta sublineages into three different genotypes (Delta R1-R3). The regional distributions of Delta R1 and Delta R2 were not correlated, indicating that recombination occurred early in the Delta outbreak. The impact of the ORF1a gene on SARS-CoV-2 transmission remains unclear; however, our findings suggest that recombination may have contributed to the evolution and global spread of the Delta lineage.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Surtos de Doenças
5.
Front Vet Sci ; 10: 1207289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546334

RESUMO

High pathogenicity avian influenza (HPAI) is a viral disease with devastating consequences for the poultry industry worldwide. Domestic ducks are a major source of HPAI viruses in many Eurasian countries. The infectivity and pathogenicity of HPAI viruses in ducks vary depending on host and viral factors. To assess the factors influencing the infectivity and pathogenicity of HPAI viruses in ducks, we compared the pathobiology of two HPAI viruses (H5N1 clade 2.3.2.1c and H5N6 clade 2.3.4.4e) in 5- and 25-week-old ducks. Both HPAI viruses caused mortality in a dose-dependent manner (104, 106, and 108 EID50) in young ducks. By contrast, adult ducks were infected but exhibited no mortality due to either virus. Viral excretion was higher in young ducks than in adults, regardless of the HPAI strain. These findings demonstrate the age-dependent mortality of clade 2.3.2.1c and clade 2.3.4.4e H5 HPAI viruses in ducks.

6.
Emerg Microbes Infect ; 12(1): 2218945, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37309051

RESUMO

Clade 2.3.4.4 Eurasian lineage H5Nx highly pathogenic avian influenza virus (HPAIV) has become the globally dominant clade and caused global outbreaks since 2014. The clade 2.3.4.4 viruses have evolved into eight hemagglutinin subgroups (2.3.4.4a-h). In this study, we evaluated the infectivity, pathobiology, and transmissibility of seven clade 2.3.4.4 viruses (two 2.3.4.4a, two 2.3.4.4b, one 2.3.4.4c and two 2.3.4.4e) in chickens. The two clade 2.3.4.4e viruses caused 100% mortality and transmissibility in chickens. However, clade 2.3.4.4a and c viruses showed 80-90% mortality and 67% transmissibility. Clade 2.3.4.4b viruses showed 100% mortality, but no transmission to co-housed chickens was observed based on lack of seroconversion. All the infected chickens died showing systemic infection, irrespective of subgroup. The results highlight that all the clade 2.3.4.4 HPAIVs used in this study caused high mortality in infected chickens, but the transmissibility of the viruses in chickens was variable in contrast to that of previous Eurasian-lineage H5N1 HPAIVs. Changes in the pathogenicity and transmissibility of clade 2.3.4.4 HPAIVs warrant careful monitoring of the viruses to establish effective control strategies.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Sepse , Animais , Galinhas , Surtos de Doenças
7.
Front Vet Sci ; 10: 1157984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377949

RESUMO

Avian influenza viruses (AIVs) in wild birds are phylogenetically separated in Eurasian and North American lineages due to the separated distribution and migration of wild birds. However, AIVs are occasionally dispersed between two continents by migratory wild birds flying across the Bering Strait. In this study, we isolated three AIVs from wild bird feces collected in South Korea that contain gene segments derived from American lineage AIVs, including an H6N2 isolated in 2015 and two H6N1 in 2017. Phylogenetic analysis suggests that the H6N2 virus had American lineage matrix gene and the H6N1 viruses had American lineage nucleoprotein and non-structural genes. These results highlight that novel AIVs have continuously emerged by reassortment between viruses from the two continents. Therefore, continuous monitoring for the emergence and intercontinental spread of novel reassortant AIV is required to prepare for a possible future outbreak.

8.
Emerg Microbes Infect ; 12(2): 2228934, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37345516

RESUMO

Following the global emergence of the SARS-CoV-2 Alpha variant of concern (VOC) in 2020, the Delta variant triggered another wave in 2021. The AY.69 lineage, a Delta VOC, was particularly prevalent in Republic of Korea (South Korea) from May 2021 to January 2022, despite the synchronized implementation of vaccination programmes and non-pharmaceutical interventions (NPIs) such as social distancing. In this study, we used phylogeographic analysis combined with a generalized linear model (GLM) to examine the impact of human movement and vaccination on viral transmission. Our findings indicated that transmission primarily originated in South Korea's metropolitan areas, and a positive correlation was observed between total human mobility (tracked by GPS on mobile phones and estimated through credit card consumption) and viral spread. The phylodynamic analysis further revealed that non-vaccinated individuals were the primary transmitters of the virus during the study period, even though vaccination programmes had commenced three months prior to the AY.69 outbreak. Our study emphasizes the need to focus on controlling SARS-CoV-2 transmission in metropolitan regions and among unvaccinated populations. Furthermore, the positive correlation between mobility data and viral dissemination could contribute to the development of more accurate predictive models for local spread of pandemics.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2/genética , República da Coreia/epidemiologia , Vacinação
9.
Emerg Infect Dis ; 29(7): 1475-1478, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37204922

RESUMO

We isolated 5 highly pathogenic avian influenza A(H5N1) clade 2.3.4.4.b viruses from wild waterfowl feces in South Korea during November 2022. Whole-genome sequencing and phylogenetic analysis revealed novel genotypes produced by reassortment with Eurasian low pathogenicity avian influenza viruses. Enhanced surveillance will be required to improve prevention and control strategies.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Filogenia , Aves , Animais Selvagens , República da Coreia/epidemiologia
10.
Vaccine ; 41(18): 2893-2904, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37012117

RESUMO

Vaccines are an essential tool for the control of viral infections in domestic animals. We generated recombinant vector herpesvirus of turkeys (vHVT) vaccines expressing computationally optimized broadly reactive antigen (COBRA) H5 of avian influenza virus (AIV) alone (vHVT-AI) or in combination with virus protein 2 (VP2) of infectious bursal disease virus (IBDV) (vHVT-IBD-AI) or fusion (F) protein of Newcastle disease virus (NDV) (vHVT-ND-AI). In vaccinated chickens, all three vHVT vaccines provided 90-100% clinical protection against three divergent clades of high pathogenicity avian influenza viruses (HPAIVs), and significantly decreased number of birds and oral viral shedding titers at 2 days post-challenge compared to shams. Four weeks after vaccination, most vaccinated birds had H5 hemagglutination inhibition antibody titers, which significantly increased post-challenge. The vHVT-IBD-AI and vHVT-ND-AI vaccines provided 100% clinical protection against IBDVs and NDV, respectively. Our findings demonstrate that multivalent HVT vector vaccines were efficacious for simultaneous control of HPAIV and other viral infections.


Assuntos
Infecções por Birnaviridae , Herpesviridae , Vírus da Doença Infecciosa da Bursa , Vírus da Influenza A , Influenza Aviária , Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vírus da Doença de Newcastle/genética , Doença de Newcastle/prevenção & controle , Galinhas , Perus , Virulência , Vacinas Sintéticas/genética , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Herpesvirus Meleagrídeo 1/genética , Vacinas Combinadas , Doenças das Aves Domésticas/prevenção & controle
11.
Sci Rep ; 12(1): 22414, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575217

RESUMO

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic since 2019. Variants of concern (VOCs) declared by the World Health Organization require continuous monitoring because of their possible changes in transmissibility, virulence, and antigenicity. The Omicron variant, a VOC, has become the dominant variant worldwide since November 2021. In the Republic of Korea (South Korea), the number of confirmed cases increased rapidly after the detection of Omicron VOC on November 24, 2021. In this study, we estimated the underlying epidemiological processes of Omicron VOC in South Korea using time-scaled phylodynamic analysis. Three distinct phylogenetic subgroups (Kor-O1, Kor-O2, and Kor-O3) were detected in South Korea. The Kor-O1 subgroup circulated in the Daegu region, whereas Kor-O2 and Kor-O3 circulated in Incheon and Jeollanam-do, respectively. The viral population size and case number of the Kor-O1 subgroup increased more rapidly than those of the other subgroups, indicating the rapid spread of the virus. The results indicated the multiple introductions of Omicron sub-lineages into South Korea and their subsequent co-circulation. The evolution and transmission of SARS-CoV-2 should be continuously monitored, and control strategies need to be improved to control the multiple variants.


Assuntos
COVID-19 , Humanos , Filogenia , COVID-19/epidemiologia , SARS-CoV-2/genética , Genômica , República da Coreia/epidemiologia
12.
Front Vet Sci ; 9: 906944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799844

RESUMO

During 2014-2016, clade 2.3.4.4 H5N8 high pathogenicity avian influenza virus (HPAIV) caused the largest known avian influenza epidemic in South Korea. Based on data from earlier H5N8 outbreaks, primitive H5N8 virus in South Korea was classified into five subgroups: C1, C2, C3, C4, and C5. The present study investigated the pathogenic and molecular epidemiologic characteristics of H5N8 viruses obtained from 388 cases of poultry farms and 85 cases of wild bird infections in South Korea during 2014-2016. Representative viruses of subgroups C1, C2, and C4 showed significant pathobiological differences in specific pathogen-free (SPF) chickens, with the H1731 (C1) virus showing substantially lower infectivity, transmissibility, and pathogenicity than the H2102 (C2) and H1924 (C4) viruses. Full genome sequence analysis showed the number of mutations that significantly increased in domestic duck-origin H5N8 HPAIVs compared to the viruses from gallinaceous poultry. These differences may have been due to the long-term circulation of viruses in domestic duck farms. The same mutations, at positions 219 and 757 of PB1, independently evolving in the C0, C1, and C2 subgroups may have been positively selected, resulting in convergent evolution at the amino acid level. Bayesian discrete trait phylodynamic analysis (DTA) indicated multiple introductions of H5N8 HPAIV from wild birds into domestic poultry in various regions in South Korea. Following initial viral introduction into domestic duck farms in the western part of Korea, domestic ducks played a major role in viral transmission and maintenance. These findings highlight the need for continued genomic surveillance and pathobiological characterization of HPAIV in birds. Enhanced biosecurity in poultry farms should be implemented to prevent the introduction, maintenance, and spread of HPAIV.

13.
Virus Evol ; 7(2): veab077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760282

RESUMO

Genomic epidemiology is a core component in investigating the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, the efficacy of control strategies in South Korea was evaluated using genomic epidemiology based on viral genome sequences of 2,065 SARS-CoV-2 cases identified in South Korea from January 2020 to December 2020. Phylogenetic analysis revealed that the majority of viruses introduced from inbound travelers did not further spread throughout South Korea; however, four distinct subgroups (KR.1-4, belonging to B.1.497, B.1, K.1 and B.41) of viruses caused local epidemics. After the introduction of enhanced social distancing, the viral population size and daily case numbers decreased, and KR.2-4 subgroups were extinguished from South Korea. Nevertheless, there was a subsequent increase in KR.1 subgroups after the downgrading of social distancing level. These results indicate that the international traveler quarantine system implemented in South Korea along with social distancing measures efficiently reduced the introduction and spread of SARS-CoV-2, but it was not completely controlled. An improvement of control strategies will be required to better control SARS-CoV-2, its variants, and future pandemic viruses.

14.
Viruses ; 13(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34835080

RESUMO

Zoonotic infection with avian influenza viruses (AIVs) of subtype H7, such as H7N9 and H7N4, has raised concerns worldwide. During the winter of 2020-2021, five novel H7 low pathogenic AIVs (LPAIVs) containing different neuraminidase (NA) subtypes, including two H7N3, an H7N8, and two H7N9, were detected in wild bird feces in South Korea. Complete genome sequencing and phylogenetic analysis showed that the novel H7Nx AIVs were reassortants containing two gene segments (hemagglutinin (HA) and matrix) that were related to the zoonotic Jiangsu-Cambodian H7 viruses causing zoonotic infection and six gene segments originating from LPAIVs circulating in migratory birds in Eurasia. A genomic constellation analysis demonstrated that all H7 isolates contained a mix of gene segments from different viruses, indicating that multiple reassortment occurred. The well-known mammalian adaptive substitution (E627K and D701N) in PB2 was not detected in any of these isolates. The detection of multiple reassortant H7Nx AIVs in wild birds highlights the need for intensive surveillance in both wild birds and poultry in Eurasia.


Assuntos
Vírus da Influenza A Subtipo H7N3/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/virologia , Animais , Animais Selvagens/virologia , Aves/genética , Aves/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N3/isolamento & purificação , Vírus da Influenza A Subtipo H7N3/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Filogenia , República da Coreia/epidemiologia
16.
Viruses ; 13(6)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199847

RESUMO

Since 2014, H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses (HPAIV) have caused outbreaks in wild birds and poultry in multiple continents, including Asia, Europe, Africa, and North America. Wild birds were suspected to be the sources of the local and global spreads of HPAIV. This study evaluated the infectivity, pathogenicity, and transmissibility of clade 2.3.4.4 H5N6 HPAIV in mandarin ducks (Aixgalericulata) and domestic pigeons (Columbia livia domestica). None of the birds used in this study, 20 mandarin ducks or 8 pigeons, showed clinical signs or mortality due to H5N6 HPAI infection. Two genotypes of H5N6 HPAIV showed replication and transmission by direct and indirect contact between mandarin ducks. H5N6 HPAIV replicated and transmitted by direct contact between pigeons, although the viral shedding titer and duration were relatively lower and shorter than those in mandarin ducks. Influenza virus antigen was detected in various internal organs of infected mandarin ducks and pigeons, indicating systemic infection. Therefore, our results indicate mandarin ducks and pigeons can be subclinically infected with clade 2.3.4.4 H5N6 HPAIV and transfer the virus to adjacent birds. The role of mandarin ducks and pigeons in the spread and prevalence of clade 2.3.4.4 H5N6 viruses should be carefully monitored.


Assuntos
Columbidae/virologia , Surtos de Doenças/veterinária , Patos/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Animais , Animais Selvagens/virologia , Infecções Assintomáticas/epidemiologia , Genótipo , Vírus da Influenza A/classificação , Influenza Aviária/sangue , Influenza Aviária/virologia , Filogenia , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Replicação Viral , Eliminação de Partículas Virais
17.
Viruses ; 13(6)2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072981

RESUMO

Infectious bronchitis virus (IBV) was first identified in the 1930s and it imposes a major economic burden on the poultry industry. In particular, GI-19 lineage has spread globally and has evolved constantly since it was first detected in China. In this study, we analyzed S1 gene sequences from 60 IBVs isolated in South Korea. Two IBV lineages, GI-15 and GI-19, were identified in South Korea. Phylogenetic analysis suggested that there were six distinct subgroups (KM91-like, K40/09-like, and QX-like I to IV) of the South Korean GI-19 IBVs. Among them, QX-type III and IV subgroups, which are phylogenetically different from those reported in South Korea in the past, accounted for more than half of the total. Moreover, the phylogeographic analysis of the QX-like subgroups indicated at least four distinct introductions of GI-19 IBVs into South Korea during 2001-2020. The efficacy of commercialized vaccines against the recently introduced QX-like subgroups should be verified, and continuous international surveillance efforts and quarantine procedures should be enhanced to prevent the incursion of viruses.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/virologia , Animais , Galinhas , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Genômica , Genótipo , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/isolamento & purificação , Filogenia , Doenças das Aves Domésticas/epidemiologia , República da Coreia/epidemiologia , Análise de Sequência de RNA , Homologia de Sequência , Glicoproteína da Espícula de Coronavírus/genética
19.
Vaccine ; 39(21): 2824-2832, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33910774

RESUMO

H5N1 highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in poultry in Bangladesh since 2007. While clade 2.2.2 and 2.3.4.2 HPAIVs have not been detected since 2012, clade 2.3.2.1a viruses have caused continuous outbreaks since 2012 despite the use of vaccines. In this study, we evaluated the efficacy of two H5 vaccines licensed in Bangladesh, RE-6 inactivated vaccine, and a recombinant herpesvirus of turkeys vaccine with an H5 insert (rHVT-H5), for protection against recent field viruses in chickens. We selected three viruses for efficacy tests (A/chicken/Bangladesh/NRL-AI-3237/2017, A/crow/Bangladesh/NRL-AI-8471/2017 and A/chicken/Bangladesh/NRL-AI-8323/2017) from 36 H5 viruses isolated from Bangladesh between 2016 and 2018 by comparing the amino acid sequences at five antigenic sites (A-E) and analyzing hemagglutination inhibition (HI) titers with reference antisera. The RE-6 and rHVT-H5 vaccines both conferred 80-100% clinical protection (i.e. reduced morbidity and mortality) against the three challenge viruses with no significant differences in protection. In addition, both vaccines significantly decreased viral shedding from infected chickens as compared to challenge control chickens. Based on these metrics, the current licensed H5 vaccines protected chickens against the recent field viruses. However, the A/crow/Bangladesh/NRL-AI-8471/2017 virus exhibited antigenic divergence including: several unique amino acid changes in antigenic epitope sites A and B and was a serological outlier in cross HI tests as visualized on the antigenic map. The continuing emergence of such antigenic variants which could alter the dominant antigenicity of field viruses should be continuously monitored and vaccines should be updated if field efficacy declines.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Aviária , Animais , Bangladesh/epidemiologia , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Influenza Aviária/prevenção & controle
20.
Viruses ; 12(12)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291548

RESUMO

In October 2020, a highly pathogenic avian influenza (HPAI) subtype H5N8 virus was identified from a fecal sample of a wild mandarin duck (Aix galericulata) in South Korea. We sequenced all eight genome segments of the virus, designated as A/Mandarin duck/Korea/K20-551-4/2020(H5N8), and conducted genetic characterization and comparative phylogenetic analysis to track its origin. Genome sequencing and phylogenetic analysis show that the hemagglutinin gene belongs to H5 clade 2.3.4.4 subgroup B. All genes share high levels of nucleotide identity with H5N8 HPAI viruses identified from Europe during early 2020. Enhanced active surveillance in wild and domestic birds is needed to monitor the introduction and spread of HPAI via wild birds and to inform the design of improved prevention and control strategies.


Assuntos
Patos/virologia , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Animais Selvagens , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Filogenia , Vigilância em Saúde Pública , República da Coreia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...