Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Anim Res ; 39(1): 30, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968765

RESUMO

BACKGROUND: The gut-brain axis (GBA) in Parkinson's disease (PD) has only been investigated in limited mice models despite dysbiosis of the gut microbiota being considered one of the major treatment targets for neurodegenerative disease. Therefore, this study examined the compositional changes of fecal microbiota in novel transgenic (Tg) mice overexpressing human α-synuclein (hαSyn) proteins under the neuron-specific enolase (NSE) to analyze the potential as GBA model. RESULTS: The expression level of the αSyn proteins was significantly higher in the substantia nigra and striatum of NSE-hαSyn Tg mice than the Non-Tg mice, while those of tyrosine hydroxylase (TH) were decreased in the same group. In addition, a decrease of 72.7% in the fall times and a 3.8-fold increase in the fall number was detected in NSE-hαSyn Tg mice. The villus thickness and crypt length on the histological structure of the gastrointestinal (GI) tract decreased in NSE-hαSyn Tg mice. Furthermore, the NSE-hαSyn Tg mice exhibited a significant increase in 11 genera, including Scatolibacter, Clostridium, Feifania, Lachnoclostridium, and Acetatifactor population, and a decrease in only two genera in Ligilactobacillus and Sangeribacter population during enhancement of microbiota richness and diversity. CONCLUSIONS: The motor coordination and balance dysfunction of NSE-hαSyn Tg mice may be associated with compositional changes in gut microbiota. In addition, these mice have potential as a GBA model.

2.
Med Sci Sports Exerc ; 54(4): 551-565, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816813

RESUMO

PURPOSE: The molecular mechanisms by which physical exercise produces beneficial effects on pathologic features and behavioral symptoms of Alzheimer's disease (AD) are not well understood. Herein, we examined whether regular moderate exercise could improve cognitive function and produce transcriptomic responses in the brain. METHODS: Four groups of mice were studied: nontransgenic control, mice expressing the human presenilin-2 wild type, mice expressing the human presenilin-2 with the N141I mutation (Tg-PS2m), and Tg-PS2m that were subjected to treadmill exercise (TE) at a speed of 10 m·min-1 for 50 min·d-1, 5 d·wk-1, for 6 wk (Tg-PS2m/Ex). RESULTS: Tg-PS2m/Ex mice exhibited increased preference in exploring a novel object than Tg-PS2m in the novel object recognition test, whereas differences observed in the water maze test and passive avoidance test were not significant. Western blot and histological analyses using amyloid oligomer (A11) and ß-amyloid (6E10) antibody indicated that amyloid oligomer-reactive bands and plaque deposition in the hippocampus were reduced, although not significantly, after TE. Transcriptomic (RNA-sequencing) analysis and subsequent protein analysis revealed that the cell cycle regulatory gene, Cdc28 protein kinase regulatory subunit 2 (Cks2), was decreased, and the cell cycle- and apoptotic cell death-related factors, including cyclin D1, proliferating cell nuclear antigen, and cleaved caspase-3, were increased in the hippocampus of Tg-PS2m, whereas TE reversed their altered expression. CONCLUSIONS: The results support the hypothesis that the pathologic features and behavioral symptoms of AD caused by accumulation of amyloid ß-peptide in hippocampus, causing aberrant cell cycle reentry and apoptosis, can be reversed by regular exercise.


Assuntos
Doença de Alzheimer , Quinases relacionadas a CDC2 e CDC28 , Presenilina-2/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas de Ciclo Celular , Cognição , Modelos Animais de Doenças , Humanos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Presenilina-2/genética
3.
Lab Anim Res ; 37(1): 21, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348800

RESUMO

BACKGROUND: As a laboratory animal resource, the ICR mouse is commonly used in a variety of research fields. However, information on differences in exercise-related characteristics in ICR mice derived from different lineages and the underlying mechanisms remains to be elucidated. In this study, we investigated the intrinsic exercise capacity and a magnitude of response to acute exercise, and sought to identify mechanisms contributing to difference in Korl:ICR (a novel ICR lineage recently established by the National Institute of Food and Drug Safety Evaluation, Korea) and two commercialized ICR lineages derived from different origins (viz., A:ICR mouse from Orient Bio Com, the United States, and B:ICR mouse from Japan SLC Inc., Japan). RESULTS: Results showed that despite no significant difference in body weight and weight-proportioned tissue mass of heart and skeletal muscles among groups, the relatively low intrinsic exercise capacity and exaggerated response to acute exercise were identified in B:ICR comparted with Korl:ICR and A:ICR, as reflected by total work and lactate threshold (LT). Also, the mitochondrial efficiency expressed as the complex 1 and complex 1 + 2 respiratory control ratio (RCR) values for cardiac mitochondrial O2 consumption in B:ICR was significantly lower than that in Korl:ICR with higher level of state 2 respiration by glutamate/malate and UCP3 expression in cardiac muscle. CONCLUSIONS: Taken together, these results indicate that the intrinsic exercise capacity of ICR mouse varies according to lineages, suggesting the role of cardiac mitochondrial coupling efficiency as a possible mechanism that might contribute to differences in the intrinsic exercise capacity and magnitude of response to exercise.

4.
Mol Neurobiol ; 58(7): 3208-3223, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33641078

RESUMO

Brain iron increases with age and abnormal brain iron metabolism is proving increasingly likely to be involved in the pathology of Alzheimer's disease (AD). The iron-regulatory effect of furin, a ubiquitously expressed proconvertase, might play an important role in AD. Therefore, there is an urgent need to study the effect of furin on iron regulation in AD. For that purpose, we aimed to determine the role of physical exercise in AD associated with brain iron dyshomeostasis. Treadmill exercise attenuated the AD-related abnormal brain iron regulation by furin in vivo, as demonstrated via experiments in aged APP-C105 mice. Next, we examined whether treadmill exercise decreases excessive iron, directly affecting amyloid-ß (Aß) production through the regulation of α-secretase-dependent processing of amyloid protein precursor (APP) involved in the modulation of furin activity. We first observed that cognitive decline and Aß-induced neuronal cell death were induced by disruption of APP processing via excess iron-induced disruption of furin activity in aged APP-C105 mice. The induced cognitive decline and cell death were attenuated by treadmill exercise. This result suggests that treadmill exercise alleviated cognitive decline and Aß-induced neuronal cell death by promoting α-secretase-dependent processing of APP through low iron-induced enhancement of furin activity. This is concomitant with decreasing levels of lipid peroxidation products and promoting antioxidant defense enzyme capacities. Therefore, iron-targeted therapeutic strategies involving treadmill exercise might be useful for patients with AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/biossíntese , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Teste de Esforço/métodos , Ferro/metabolismo , Doença de Alzheimer/psicologia , Doença de Alzheimer/terapia , Animais , Morte Celular/fisiologia , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/terapia , Teste de Esforço/psicologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/psicologia
5.
Lab Anim Res ; 36: 29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874958

RESUMO

C57BL/6NKorl mice are a novel mouse stock recently developed by the National Institute of Food and Drug Safety Evaluation in Korea. Extensive research into the nature of C57BL/6NKorl mice is being conducted. However, there is no scientific evidence for the phenotypic response to restraint stress (RST), a stress paradigm for modeling depressive disorders, in rodents. In this study, we investigated the repeated RST-induced depressive-like phenotypes in C57BL/6 N mouse substrains (viz., C57BL/6NKorl mice from Korea, C57BL/6NA mice from the United States, and C57BL/6NB mice from Japan) obtained from different sources. The results showed that C57BL/6 N mice derived from various sources exposed to repeated RST resulted in depressive-like phenotypes reflected by a similar degree of behavioral modification and susceptibility to oxidative stress in a duration-dependent manner, except for the distinctive features (increased body weight (BW) and tolerance to the suppression of BW gain by exposure to repeated RST) in C57BL/6NKorl mice. Taken together, the duration-dependent alteration in depressive-like phenotypes by repeated exposure to RST observed in this study may provide valuable insights into the nature of C57BL/6NKorl mice as an alternative animal resource for better understanding of the etiology of depressive disorders and the mechanisms of antidepressant actions.

6.
Lab Anim Res ; 35: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32257898

RESUMO

MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is commonly used to induce nigrostriatal defects to induce parkinsonism and/or parkinsonian syndrome, to replicate the lesions seen in Parkinson's disease (PD), with use in numerous PD models in mice. It has been suggested that various biological characteristics including strain could result in differing mortality rates, sensitivity to MPTP administration, and reproducibility of lesions in mice, but there is no evidence on the sensitivity of C57BL/6 mice from different origins to MPTP and its associated pathological lesions. In this study, we investigated the magnitude of the dose-dependent response to acute MPTP administration in C57BL/6NKorl mice and two commercialized C57BL/6 stocks derived from the United States and Japan. We measured biological features (body weight, temperature, and composition), nigrostriatal neurotoxic responses (dopamine levels, tyrosine hydroxylase enzymes, and protein carbonylation) and motor function. In results, the three different C57BL/6 stocks exhibited similar overall neurotoxic response and locomotor impairment which increased in a dose-dependent manner with acute MPTP administration (10 mg/kg, 20 mg/kg, and 30 mg/kg, all with external heat support), although some of these differences were not significant. In conclusion, this study provides scientific evidence that C57BL/6NKorl mice can be used as an alternative animal model for practical and targeted PD research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...