Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159480

RESUMO

Colitis is a colon mucosal disorder characterized by intestinal damage and inflammation. This current study aimed to evaluate the effect of meroterpenoid-rich ethanoic extract of a brown algae, Sargassum macrocarpum (MES) on dextran sulfate sodium (DSS)-induced colitis in mice and explore the possible mechanisms. Mice were given 4% DSS in drinking water for 7 days to induce colitis, followed by 3 days of regular water. MES (12 mg/kg body weight) or celecoxib (10 mg/kg body weight) was administrated orally to mice on a daily basis during these 10 days. Both MES and celecoxib supplementations significantly attenuated DSS-induced weight loss, shortening of colon length, elevated myeloperoxidase activity as well as histomorphological changes of colon. MES and celecoxib reduced the inflammation level of colon tissue, as indicated by its suppression on a panel of pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-17, tumor necrosis factor α, and interferon γ, and a group of inflammatory proteins, including intracellular adhesion molecule 1, vascular adhesion molecule 1, matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and inducible nitric oxidase. In addition, their administration down-regulated pro-inflammatory cytokines in serum. Moreover, the supplementation of MES suppressed the DSS-induced hyperactivation of Akt, JNK, and NF-κB signaling pathways. Taken together, our results demonstrate that MES ameliorates DSS-induced colitis in mice, suggesting that MES may have therapeutic implications for the treatment of colitis.

2.
Int Immunopharmacol ; 42: 81-89, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27902962

RESUMO

Vascular inflammation is a key factor in the pathogenesis of atherosclerosis. The purpose of this study was to investigate the protective effects of sargachromenol (SCM) against tumor necrosis factor (TNF)-α-induced vascular inflammation. SCM decreased the expression of cell adhesion molecules, including intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs), resulted in reduced adhesion of monocytes to HUVECs. SCM also decreased the production of monocyte chemoattractant protein-1 and matrix metalloproteinase-9 in TNF-α-induced HUVECs. Additionally, SCM inhibited activation of nuclear factor kappa B (NF-κB) induced by TNF-α through preventing the degradation of inhibitor kappa B. Moreover, SCM reduced the production of reactive oxygen species in TNF-α-treated HUVECs. Overall, SCM alleviated vascular inflammation through the regulation of NF-κB activation and through its intrinsic antioxidant activity in TNF-α-induced HUVECs. These results indicate that SCM may have potential application as a therapeutic agent against vascular inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Benzopiranos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Monócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Sargassum/imunologia , Adesão Celular/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/imunologia , Cultura Primária de Células , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
J Med Food ; 19(11): 1023-1031, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27845863

RESUMO

Sargassum serratifolium was found to contain high concentrations of meroterpenoids, having strong antioxidant, anti-inflammatory, and neuroprotective activities. This study aims to investigate the anti-inflammatory mechanisms of an ethanolic extract of S. serratifolium (ESS) using lipopolysaccharide (LPS)-stimulated BV2 microglial cells and to identify the anti-inflammatory components in ESS. The level of proinflammatory cytokines was measured by enzyme-linked immunosorbent assay. The expression of inflammation-related proteins and mRNA was evaluated by Western blot and reverse transcription-polymerase chain reaction analysis, respectively. Anti-inflammatory activities of isolated components from ESS were analyzed in LPS-stimulated BV2 cells. ESS inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 and the expression of inducible NO synthase and cyclooxygenase-2. ESS also decreased the release of proinflammatory cytokines in a dose-dependent manner. LPS-induced nuclear factor-kappa B (κB) transcriptional activity and translocation into the nucleus were remarkably suppressed by ESS through the prevention of inhibitor κB-α degradation. The main anti-inflammatory components in ESS were identified as sargahydroquinoic acid, sargachromenol, and sargaquinoic acid based on the inhibition of NO production using LPS-stimulated BV2 cells. Furthermore, treatment with ESS significantly reduced levels of tumor necrosis factor-α and interleukin-1ß stimulated with LPS in mouse hippocampus. Our results indicate that ESS can be used as a functional food or therapeutic agent for the treatment of neuroinflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sargassum/química , Alcenos/farmacologia , Animais , Anti-Inflamatórios/química , Benzopiranos/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia/citologia , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , RNA Mensageiro/biossíntese , RNA Mensageiro/efeitos dos fármacos , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
4.
J Agric Food Chem ; 60(36): 9120-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22897701

RESUMO

Ecklonia stolonifera is a brown alga that was shown to have antioxidant, anti-inflammatory, tyrosinase inhibitory, and chemopreventive activities. However, the molecular mechanisms underlying its anti-inflammatory activity remain unclear. In this study, we investigated the molecular mechanism of the anti-inflammatory action of E. stolonifera ethanolic extracts (ESE) using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. ESE inhibited LPS-induced nitric oxide (IC(50) = 72 ± 1.9 µg/mL) and prostaglandin E(2) (IC(50) = 98 ± 5.3 µg/mL) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. ESE also reduced the production of pro-inflammatory cytokines in LPS-stimulated RAW 264.7 cells. LPS-induced nuclear factor-κB (NF-κB) transcriptional activity and NF-κB translocation into the nucleus were significantly inhibited by ESE treatment through the prevention of the degradation of inhibitor κB-α. Moreover, ESE inhibited the activation of Akt, ERK, JNK1/2, and p38 MAPK in LPS-stimulated RAW 264.7 cells. The main components with anti-inflammatory activity in ESE were identified as phlorofucofuroeckol A and B based on the inhibition of NO production. Our results indicate that ESE can be considered as a potential source of therapeutic agents for inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Phaeophyceae/química , Animais , Anti-Inflamatórios/isolamento & purificação , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...