Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 210: 114300, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35489276

RESUMO

Cyanotoxins are toxins produced by cyanobacteria; they negatively impact water resources used by humans and disrupt ecosystems worldwide. Among cyanotoxins, saxitoxin (STX) is a small molecule that causes paralysis in humans and contamination in freshwater resources. To monitor low concentration of STX levels, a sensitive and high fidelity detection system is required. In this study, a round-type micro-gap electrode (RMGE) was fabricated that provides the high signal fidelity for STX detection in real freshwater sample. The RMGE has the 15 pairs of identical electrode wire length between gap that gives the high signal fidelity. In addition, the sensitivity for STX detection was improved by introducing the porous platinum nanoparticle (pPtNP) that enahced the electrochemical sensitivity and the STX aptamer was used as the bioprobe. An electrochemical measurement method (square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS)) was introduced to construct STX biosensor. To evaluate the biosensor performance, the limit of detection (LOD) and selectivity test were performed on real freshwater samples. The biosensor demonstrated high selectivity even in freshwater samples over a wide linear concentration range of 10 pg/mL to 1 µg/mL and a detection limit of 4.669 pg/mL. These results suggest that the designed biosensor shows a wide range of possibilities for the detection of toxicants in freshwater that provide the new direction to the biosensor electrode design.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Técnicas Biossensoriais/métodos , Ecossistema , Técnicas Eletroquímicas/métodos , Eletrodos , Água Doce , Humanos , Limite de Detecção , Oligonucleotídeos , Platina , Porosidade , Saxitoxina
2.
Nanoscale ; 14(4): 1409-1420, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35018402

RESUMO

In advanced galvanic replacement, variable factors such as the combination of two elements where actual redox reaction and post-synthetic structural transformation take place. Research on manufacturing distinctive nanostructures has mainly focused on the shape of the sacrificial nanotemplate, the presence or absence of additives, and the reaction temperature. Here, we have attempted to confirm the dependency on the solvent, which was considered to simply serve as a medium for a homogeneous chemical reaction to proceed by aiding the dispersion of the nanotemplate and reactants. Thus, we obtained mushroom-like Au nanoplates (mAuNPs) by comprehensive galvanic replacement reaction between solvents, additives, and adsorbents. The mAuNPs with a porous Au nanoplate head and a hollow nanotube tail structure were formed via an optimization process in a 50 v/v% solvent comprising water and ethylene glycol. As a result of confirming the galvanic replacement in co-solvent conditions, in which various types of water miscible solvents were introduced, it was revealed that the most critical factors for regulating the surface polymeric environment of the nanoplate were the relative polarity index of the co-solvent and the hydrogen bonding type. These depend on the molecular structure of the solvent. The manufactured mAuNPs exhibited excellent absorbance in the near-infrared region, and efficient photothermal (PT) conversion-mediated heat dissipation under local laser irradiation. These results confirm the viability of the gene-thermo dual-modal combinatorial cancer therapy based on the surface loading of oligonucleotides and peptides, and the PT therapeutic approach in vitro and in vivo.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ouro , Humanos , Porosidade , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA