Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Clin Med ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792481

RESUMO

Background/Objectives: This study explores the impact of QMAC-DST, a rapid, fully automated phenotypic drug susceptibility test (pDST), on the treatment of tuberculosis (TB) patients. Methods: This pre-post comparative study, respectively, included pulmonary TB patients who began TB treatment between 1 December 2020 and 31 October 2021 (pre-period; pDST using the Löwenstein-Jensen (LJ) DST (M-kit DST)) and between 1 November 2021 and 30 September 2022 (post-period; pDST using the QMAC-DST) in five university-affiliated tertiary care hospitals in South Korea. We compared the turnaround times (TATs) of pDSTs and the time to appropriate treatment for patients whose anti-TB drugs were changed based on these tests between the groups. All patients were permitted to use molecular DSTs (mDSTs). Results: A total of 182 patients (135 in the M-kit DST group and 47 in the QMAC-DST group) were included. The median TAT was 36 days for M-kit DST (interquartile range (IQR), 30-39) and 12 days for QMAC-DST (IQR, 9-15), with the latter being significantly shorter (p < 0.001). Of the total patients, 10 (5.5%) changed their anti-TB drugs based on the mDST or pDST results after initiating TB treatment (8 in the M-kit DST group and 2 in the QMAC-DST group). In the M-kit DST group, three (37.5%) patients changed anti-TB drugs based on the pDST results. In the QMAC-DST group, all changes were due to mDST results; therefore, calculating the time to appropriate treatment for patients whose anti-TB drugs were changed based on pDST results was not feasible. In the QMAC-DST group, 46.8% of patients underwent the first-line line probe assay compared to 100.0% in the M-kit DST group (p < 0.001), indicating that rapid QMAC-DST results provide quicker assurance of the ongoing treatment by confirming susceptibility to the current anti-TB drugs. Conclusions: QMAC-DST delivers pDST results more rapidly than LJ-DST, ensuring faster confirmation for the current treatment regimen.

2.
Nat Commun ; 15(1): 3368, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643233

RESUMO

The immune escape of Omicron variants significantly subsides by the third dose of an mRNA vaccine. However, it is unclear how Omicron variant-neutralizing antibodies develop under repeated vaccination. We analyze blood samples from 41 BNT162b2 vaccinees following the course of three injections and analyze their B-cell receptor (BCR) repertoires at six time points in total. The concomitant reactivity to both ancestral and Omicron receptor-binding domain (RBD) is achieved by a limited number of BCR clonotypes depending on the accumulation of somatic hypermutation (SHM) after the third dose. Our findings suggest that SHM accumulation in the BCR space to broaden its specificity for unseen antigens is a counterprotective mechanism against virus variant immune escape.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Front Immunol ; 15: 1342285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576618

RESUMO

B cell receptors (BCRs) denote antigen specificity, while corresponding cell subsets indicate B cell functionality. Since each B cell uniquely encodes this combination, physical isolation and subsequent processing of individual B cells become indispensable to identify both attributes. However, this approach accompanies high costs and inevitable information loss, hindering high-throughput investigation of B cell populations. Here, we present BCR-SORT, a deep learning model that predicts cell subsets from their corresponding BCR sequences by leveraging B cell activation and maturation signatures encoded within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve reconstruction of BCR phylogenetic trees, and reproduce results consistent with those verified using physical isolation-based methods or prior knowledge. Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it revealed inter-individual heterogeneity of evolutionary trajectories towards Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to improve our understanding of B cell responses.


Assuntos
Subpopulações de Linfócitos B , Aprendizado Profundo , Humanos , Filogenia , Vacinas contra COVID-19 , Receptores de Antígenos de Linfócitos B/genética
4.
Heliyon ; 10(4): e26663, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420468

RESUMO

Myasthenia Gravis (MG) patients with anti-acetylcholine receptor (AChR) antibodies frequently show hyperplastic thymi with ectopic germinal centers, where autoreactive B cells proliferate with the aid of T cells. In this study, thymus and peripheral blood (PB) samples were collected from ten AChR antibody-positive MG patients. T cell receptor (TCR) repertoires were analyzed using next-generation sequencing (NGS), and compared with that of an age and sex matched control group generated from a public database. Certain V genes and VJ gene recombination pairs were significantly upregulated in the TCR chains of αß-T cells in the PB of MG patients compared to the control group. Furthermore, the TCR chains found in the thymi of MG patients had a weighted distribution to longer CDR3 lengths when compared to the PB of MG patients, and the TCR beta chains (TRB) in the MG group's PB showed increased clonality encoded by one upregulated V gene. When TRB sequences were sub-divided into groups based on their CDR3 lengths, certain groups showed decreased clonality in the MG group's PB compared to the control group's PB. Finally, we demonstrated that stereotypic MG patient-specific TCR clonotypes co-exist in both the PB and thymi at a much higher frequency than that of the clonotypes confined to the PB. These results strongly suggest the existence of a biased T cell-mediated immune response in MG patients, as observed in other autoimmune diseases.

5.
Mol Cancer ; 23(1): 26, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291400

RESUMO

Technologies to decipher cellular biology, such as bulk sequencing technologies and single-cell sequencing technologies, have greatly assisted novel findings in tumor biology. Recent findings in tumor biology suggest that tumors construct architectures that influence the underlying cancerous mechanisms. Increasing research has reported novel techniques to map the tissue in a spatial context or targeted sampling-based characterization and has introduced such technologies to solve oncology regarding tumor heterogeneity, tumor microenvironment, and spatially located biomarkers. In this study, we address spatial technologies that can delineate the omics profile in a spatial context, novel findings discovered via spatial technologies in oncology, and suggest perspectives regarding therapeutic approaches and further technological developments.


Assuntos
Biologia , Neoplasias , Humanos , Oncologia , Microambiente Tumoral/genética , Neoplasias/genética
6.
ACS Synth Biol ; 12(12): 3567-3577, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37961855

RESUMO

A comprehensive error analysis of DNA-stored data during processing, such as DNA synthesis and sequencing, is crucial for reliable DNA data storage. Both synthesis and sequencing errors depend on the sequence and the transition of bases of nucleotides; ignoring either one of the error sources leads to technical challenges in minimizing the error rate. Here, we present a methodology and toolkit that utilizes an oligonucleotide library generated from a 10-base-shifted sequence array, which is individually labeled with unique molecular identifiers, to delineate and profile DNA synthesis and sequencing errors simultaneously. This methodology enables position- and sequence-independent error profiling of both DNA synthesis and sequencing. Using this toolkit, we report base transitional errors in both synthesis and sequencing in general DNA data storage as well as degenerate-base-augmented DNA data storage. The methodology and data presented will contribute to the development of DNA sequence designs with minimal error.


Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA/genética , Replicação do DNA , Nucleotídeos/genética
7.
Cell Rep Methods ; 3(10): 100617, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37852254

RESUMO

Co-occurrence of multiple myeloma and acute myelogenous leukemia is rare, with both malignancies often tracing back to multipotent hematopoietic stem cells. Cytogenetic techniques are the established baseline for diagnosis and characterization of complex hematological malignancies. In this study, we develop a workflow called Hema-seq to delineate clonal changes across various hematopoietic lineages through the integration of whole-genome sequencing, copy-number variations, cell morphology, and cytogenetic aberrations. In Hema-seq, cells are selected from Wright-stained slides and fluorescent probe-stained slides for sequencing. This technique therefore enables direct linking of whole-genome sequences to cytogenetic profiles. Through this method, we mapped sequential clonal alterations within the hematopoietic lineage, identifying critical shifts leading to myeloma and acute myeloid leukemia (AML) cell formations. By synthesizing data from each cell lineage, we provided insights into the hematopoietic tree's clonal evolution. Overall, this study highlights Hema-seq's capability in deciphering genomic heterogeneity in complex hematological malignancies, which can enable better diagnosis and treatment strategies.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Mieloma Múltiplo , Humanos , Neoplasias Hematológicas/diagnóstico , Aberrações Cromossômicas , Leucemia Mieloide Aguda/diagnóstico , Análise Citogenética , Mieloma Múltiplo/diagnóstico , Genômica
8.
Nat Commun ; 14(1): 5261, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644058

RESUMO

Determining mutational landscapes in a spatial context is essential for understanding genetically heterogeneous cell microniches. Current approaches, such as Multiple Displacement Amplification (MDA), offer high genome coverage but limited multiplexing, which hinders large-scale spatial genomic studies. Here, we introduce barcoded MDA (bMDA), a technique that achieves high-coverage genomic analysis of low-input DNA while enhancing the multiplexing capabilities. By incorporating cell barcodes during MDA, bMDA streamlines library preparation in one pot, thereby overcoming a key bottleneck in spatial genomics. We apply bMDA to the integrative spatial analysis of triple-negative breast cancer tissues by examining copy number alterations, single nucleotide variations, structural variations, and kataegis signatures for each spatial microniche. This enables the assessment of subclonal evolutionary relationships within a spatial context. Therefore, bMDA has emerged as a scalable technology with the potential to advance the field of spatial genomics significantly.


Assuntos
Aminas , Genômica , Evolução Biológica , Biblioteca Gênica
9.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446296

RESUMO

We recently developed a multiplex diagnostic kit, QPLEX™ Alz plus assay kit, which captures amyloid-ß1-40, galectin-3 binding protein, angiotensin-converting enzyme, and periostin simultaneously using microliters of peripheral blood and utilizes an optimized algorithm for screening Alzheimer's disease (AD) by correlating with cerebral amyloid deposition. Owing to the demand for early AD detection, we investigate the potential of our kit for the early clinical diagnosis of AD. A total of 1395 participants were recruited, and their blood samples were analyzed with the QPLEX™ kit. The average of QPLEX™ algorithm values in each group increased gradually in the order of the clinical progression continuum of AD: cognitively normal (0.382 ± 0.150), subjective cognitive decline (0.452 ± 0.130), mild cognitive impairment (0.484 ± 0.129), and AD (0.513 ± 0.136). The algorithm values between each group showed statistically significant differences among groups divided by Mini-Mental State Examination and Clinical Dementia Rating. The QPLEX™ algorithm values could be used to distinguish the clinical continuum of AD or cognitive function. Because blood-based diagnosis is more accessible, convenient, and cost- and time-effective than cerebral spinal fluid or positron emission tomography imaging-based diagnosis, the QPLEX™ kit can potentially be used for health checkups and the early clinical diagnosis of AD.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Testes Neuropsicológicos , Disfunção Cognitiva/complicações , Cognição , Transtornos Cognitivos/etiologia , Tomografia por Emissão de Pósitrons , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Progressão da Doença
10.
Nature ; 619(7971): 755-760, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438523

RESUMO

Displays in which arrays of microscopic 'particles', or chiplets, of inorganic light-emitting diodes (LEDs) constitute the pixels, termed MicroLED displays, have received considerable attention1,2 because they can potentially outperform commercially available displays based on organic LEDs3,4 in terms of power consumption, colour saturation, brightness and stability and without image burn-in issues1,2,5-7. To manufacture these displays, LED chiplets must be epitaxially grown on separate wafers for maximum device performance and then transferred onto the display substrate. Given that the number of LEDs needed for transfer is tremendous-for example, more than 24 million chiplets smaller than 100 µm are required for a 50-inch, ultra-high-definition display-a technique capable of assembling tens of millions of individual LEDs at low cost and high throughput is needed to commercialize MicroLED displays. Here we demonstrate a MicroLED lighting panel consisting of more than 19,000 disk-shaped GaN chiplets, 45 µm in diameter and 5 µm in thickness, assembled in 60 s by a simple agitation-based, surface-tension-driven fluidic self-assembly (FSA) technique with a yield of 99.88%. The creation of this level of large-scale, high-yield FSA of sub-100-µm chiplets was considered a significant challenge because of the low inertia of the chiplets. Our key finding in overcoming this difficulty is that the addition of a small amount of poloxamer to the assembly solution increases its viscosity which, in turn, increases liquid-to-chiplet momentum transfer. Our results represent significant progress towards the ultimate goal of low-cost, high-throughput manufacture of full-colour MicroLED displays by FSA.

11.
Nat Commun ; 14(1): 3597, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328461

RESUMO

Pen-drawing is an intuitive, convenient, and creative fabrication method for delivering emergent and adaptive design to real devices. To demonstrate the application of pen-drawing to robot construction, we developed pen-drawn Marangoni swimmers that perform complex programmed tasks using a simple and accessible manufacturing process. By simply drawing on substrates using ink-based Marangoni fuel, the swimmers demonstrate advanced robotic motions such as polygon and star-shaped trajectories, and navigate through maze. The versatility of pen-drawing allows the integration of the swimmers with time-varying substrates, enabling multi-step motion tasks such as cargo delivery and return to the original place. We believe that our pen-based approach will significantly expand the potential applications of miniaturized swimming robots and provide new opportunities for simple robotic implementations.


Assuntos
Robótica , Movimento (Física) , Natação
12.
Hum Genomics ; 17(1): 13, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814285

RESUMO

BACKGROUND: Therapy-related myeloid neoplasm (T-MN) rarely occurs among cancer survivors, and was characterized by poor prognosis. T-MN has germline predisposition in a considerable proportion. Here, clinical characteristics and germline/somatic variant profiles in T-MN patients were investigated, and the findings were compared with those of previous studies. METHODS: A review of medical records, cytogenetic study, targeted sequencing by next-generation sequencing, and survival analysis were performed on 53 patients with T-MN at a single institution in Korea. RESULTS: The patients were relatively younger compared to T-MN patients in other studies. Our T-MN patients showed a high frequency of complex karyotypes, -5/del(5q), and -7/del(7q), which was similar to the Japanese study group but higher than the Australian study group. The most common primary disease was non-Hodgkin lymphoma, followed by breast cancer. The detailed distributions of primary diseases were different across study groups. Seven patients (13.2%) harbored deleterious presumed/potential germline variants in cancer predisposition genes (CPG) such as BRIP1, CEBPA, DDX41, FANCM, NBN, NF1, and RUNX1. In the somatic variant profile, TP53 was the most frequently mutated gene, which was consistent with the previous studies about T-MN. However, the somatic variant frequency in our study group was lower than in other studies. Adverse factors for overall survival were male sex, older age, history of previous radiotherapy, previous longer cytotoxic therapy, and -5/del(5q). CONCLUSION: The findings of our study corroborate important information about T-MN patients. As well as a considerable predisposition to CPG, the clinical characteristics and somatic variant profile showed distinctive patterns. Germline variant testing should be recommended for T-MN patients. If the T-MN patients harbor pathogenic germline variants, the family members for stem cell donation should be screened for carrier status through germline variant testing to avoid donor-derived myeloid neoplasm. For the prediction of the prognosis in T-MN patients, sex, age, past treatment history, and cytogenetic findings can be considered.


Assuntos
Predisposição Genética para Doença , Leucemia Mieloide Aguda , Feminino , Humanos , Masculino , Genômica , Mutação em Linhagem Germinativa , República da Coreia , Leucemia Mieloide Aguda/induzido quimicamente
13.
J Clin Lab Anal ; 37(3): e24839, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36658792

RESUMO

INTRODUCTION: Recently, multigene target sequencing is widely performed for the purpose of prognostic prediction and application of targeted therapy. Here, we proposed a new scoring system that encompasses gene variations, telomere length, and Revised International Prognostic Scoring System (IPSS-R) together in Asian myelodysplastic syndrome. METHODS: We developed a new scoring model of these variables: age ≥ 65 years + IPSS-R score + ASXL1 mutation + TP53 mutation + Telomere length (<5.37). According to this new scoring system, patients were divided into four groups: very good score cutoff (≤3.0), good (3.0-4.5), poor (4.5-7.0), and very poor (>7.0). RESULTS: The median OS was 170.1, 100.4, 46.0, and 12.0 months for very good, good, poor, and very poor, retrospectively (p < 0.001). Meanwhile, according to the conventional IPSS-R scoring system, the median OS was 141.3, 50.2, 93.0, 36.0, and 16.2 months for very low, low, intermediate, high, and very high, retrospectively (p < 0.001). CONCLUSIONS: The newly developed model incorporating molecular variations and TL yielded more clear separations of the survival curves. By adding the presence of gene mutation and telomere length to the existing IPSS-R, its predictive ability can be further improved in myelodysplastic syndrome.


Assuntos
Síndromes Mielodisplásicas , Humanos , Idoso , Estudos Retrospectivos , Prognóstico , Mutação , Telômero
14.
Biomicrofluidics ; 16(6): 061101, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36483021

RESUMO

Encoded microparticles have great potential in small-volume multiplexed assays. It is important to link the micro-level assays to the macro-level by indexing and manipulating the microparticles to enhance their versatility. There are technologies to actively manipulate the encoded microparticles, but none is capable of directly manipulating the encoded microparticles with homogeneous physical properties. Here, we report the image-based laser-induced forward transfer system for active manipulation of the graphically encoded microparticles. By demonstrating the direct retrieval of the microparticles of interest, we show that this system has the potential to expand the usage of encoded microparticles.

15.
PLoS One ; 17(12): e0271624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36534659

RESUMO

Hereditary thrombocytopenia is a heterogeneous group of congenital disorders with a wide range of symptoms depending on the severity of platelet dysfunction or thrombocytopenia. Because of its clinical phenotypes and the bone marrow morphology associated with this condition, hereditary thrombocytopenia can be misdiagnosed as primary immune thrombocytopenia and myelodysplastic syndrome. Therefore, genetic evidence is necessary for the accurate diagnosis of hereditary thrombocytopenia. Refractory cytopenia of childhood is a subgroup of myelodysplastic syndrome that was added to the World Health Organization classification in 2008. To investigate the germline and somatic variants associated with refractory cytopenia of childhood, we performed targeted multigene sequencing in three patients with refractory cytopenia of childhood. Of the three patients, one progressed from megakaryocytic hypoplasia with thrombocytopenia, and targeted multigene sequencing revealed THPO variants in this patient and his sister. We propose that the monoallelic deletion of THPO is a potential candidate for germline predisposition to myeloid malignancy.


Assuntos
Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Trombocitopenia , Humanos , Transtornos Mieloproliferativos/diagnóstico , Síndromes Mielodisplásicas/genética , Trombocitopenia/diagnóstico , Suscetibilidade a Doenças
16.
Anal Chem ; 94(49): 17186-17194, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36399654

RESUMO

A high-throughput, accurate screening is crucial for the prevention and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current methods, which involve sampling from the nasopharyngeal (NP) area by medical staffs, constitute a fundamental bottleneck in expanding the testing capacity. To meet the scales required for population-level surveillance, self-collectable specimens can be used; however, its low viral load has hindered its clinical adoption. Here, we describe a magnetic nanoparticle functionalized with synthetic apolipoprotein H (ApoH) peptides to capture, concentrate, and purify viruses. The ApoH assay demonstrates a viral enrichment efficiency of >90% for both SARS-CoV-2 and its variants, leading to an order of magnitude improvement in analytical sensitivity. For validation, we apply the assay to a total of 84 clinical specimens including nasal, oral, and mouth gargles obtained from COVID-19 patients. As a result, a 100% positivity rate is achieved from the patient-collected nasal and gargle samples, which exceeds that of the traditional NP swab method. The simple 12 min pre-enrichment assay enabling the use of self-collectable samples will be a practical solution to overcome the overwhelming diagnostic capacity. Furthermore, the methodology can easily be built on various clinical protocols, allowing its broad applicability to various disease diagnoses.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , beta 2-Glicoproteína I , Teste para COVID-19 , Nasofaringe , Manejo de Espécimes/métodos , Peptídeos
17.
Biomark Res ; 10(1): 79, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357941

RESUMO

A few critically short telomeres trigger genomic instability regardless of average telomere length (TL). Recently, the telomere shortest length assay (TeSLA) was developed to detect critically short telomeres and measure absolute telomeres. Using TeSLA with the internally labeled biotin probe, we measured the TL of bone marrow (BM) aspirates from 52 patients with myelodysplastic syndrome (MDS). A percentage of shortest telomeres (< 1.0 kb (ShTL1.0)) were calculated. ShTL1.0 was correlated to IPSS-R risk (spearman's rho = 0.35 and p = 0.0196), and ShTL1.0 and BM blast (2.61% in < 5% blast, 4.15% in 5-10% blast, and 6.80% in 10-20% blast, respectively, p = 0.0332). Interestingly, MDS patients with a shortest TL ≥ 0.787 kb at the time of diagnosis showed better overall survival (OS) and progression-free survival (PFS) than patients with a shortest TL < 0.787 kb in the multivariate analyses (HR = 0.13 and 0.30, p = 0.011 and 0.048 for OS and PFS, respectively). Our results clearly show the presence and abundance of critically short telomeres in MDS patients. These pathologic telomeres are associated with IPSS-R which is a validated prognostic scoring system in MDS. Furthermore, they are independent prognostic factors for OS in MDS patients. Future prospective studies are needed to validate our results.

18.
Cell Rep ; 40(12): 111391, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130492

RESUMO

Alzheimer's disease (AD) is the most prevalent type of dementia. Reports have revealed that the peripheral immune system is linked to neuropathology; however, little is known about the contribution of B lymphocytes in AD. For this longitudinal study, 133 participants are included at baseline and second-year follow-up. Also, we analyze B cell receptor (BCR) repertoire data generated from a public dataset of three normal and 10 AD samples and perform BCR repertoire profiling and pairwise sharing analysis. As a result, longitudinal increase in B lymphocytes is associated with increased cerebral amyloid deposition and hyperactivates induced pluripotent stem cell-derived microglia with loss-of-function for beta-amyloid clearance. Patients with AD share similar class-switched BCR sequences with identical isotypes, despite the high somatic hypermutation rate. Thus, BCR repertoire profiling can lead to the development of individualized immune-based therapeutics and treatment. We provide evidence of both quantitative and qualitative changes in B lymphocytes during AD pathogenesis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Linfócitos B/metabolismo , Humanos , Estudos Longitudinais , Receptores de Antígenos de Linfócitos B
19.
Nat Biomed Eng ; 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982331

RESUMO

Methods of computational pathology applied to the analysis of whole-slide images (WSIs) do not typically consider histopathological features from the tumour microenvironment. Here, we show that a graph deep neural network that considers such contextual features in gigapixel-sized WSIs in a semi-supervised manner can provide interpretable prognostic biomarkers. We designed a neural-network model that leverages attention techniques to learn features of the heterogeneous tumour microenvironment from memory-efficient representations of aggregates of highly correlated image patches. We trained the model with WSIs of kidney, breast, lung and uterine cancers and validated it by predicting the prognosis of 3,950 patients with these four different types of cancer. We also show that the model provides interpretable contextual features of clear cell renal cell carcinoma that allowed for the risk-based retrospective stratification of 1,333 patients. Deep graph neural networks that derive contextual histopathological features from WSIs may aid diagnostic and prognostic tasks.

20.
FEBS Open Bio ; 12(9): 1634-1643, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35866358

RESUMO

B cells recognize antigens via membrane-expressed B-cell receptors (BCR) and antibodies. Similar human BCR sequences are frequently found at a significantly higher frequency than that theoretically calculated. Patients infected with SARS-CoV2 and HIV or with autoimmune diseases share very similar BCRs. Therefore, in silico reconstitution of BCR repertoires and identification of stereotypical BCR sequences related to human pathology have diagnostic potential. Furthermore, monitoring changes of clinically significant BCR sequences and isotype conversion has prognostic potential. For BCR repertoire analysis, peripheral blood (PB) is the most convenient source. However, the optimal human PB volume for in silico reconstitution of the BCR repertoire has not been studied in detail. Here, we sampled 5, 10, and 20 mL PB from the left arm and 40 mL PB from the right arm of two volunteers, reconstituted in silico PB BCR repertoires, and compared their composition. In both volunteers, PB sampling over 20 mL resulted in slight increases in functional unique sequences (FUSs) or almost no increase in repertoire diversity. All FUSs with a frequency above 0.08% or 0.03% in the 40 mL PB BCR repertoire were detected even in the 5 mL PB BCR repertoire from each volunteer. FUSs with a higher frequency were more likely to be found in BCR repertoires from reduced PB volume, and those coexisting in two repertoires showed a statistically significant correlation in frequency irrespective of sampled anatomical site. The correlation was more significant in higher-frequency FUSs. These observations support the potential of BCR repertoire analysis for diagnosis.


Assuntos
COVID-19 , RNA Viral , Volume Sanguíneo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...