Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38923889

RESUMO

Developing a non-noble metal-based bifunctional electrocatalyst with high efficiency and stability for overall water splitting is desirable for renewable energy systems. We developed a novel method to fabricate a heterostructured electrocatalyst, comprising a NiCoP nanoneedle array grown on Ti3C2Tx MXene-coated Ni foam (NCP-MX/NF) using a dip-coating hydrothermal method, followed by phosphorization. Due to the abundance of active sites, enhanced electronic kinetics, and sufficient electrolyte accessibility resulting from the synergistic effects of NCP and MXene, NCP-MX/NF bifunctional alkaline catalysts afford superb electrocatalytic performance, with a low overpotential (72 mV at 10 mA cm-2 for HER and 303 mV at 50 mA cm-2 for OER), a low Tafel slope (49.2 mV dec-1 for HER and 69.5 mV dec-1 for OER), and long-term stability. Moreover, the overall water splitting performance of NCP-MX/NF, which requires potentials as low as 1.54 and 1.76 V at a current density of 10 and 50 mA cm-2, respectively, exceeded the performance of the Pt/C∥IrO2 couple in terms of overall water splitting. Density functional theory (DFT) calculations for the NCP/Ti3C2O2 interface model predicted the catalytic contribution to interfacial formation by analyzing the electronic redistribution at the interface. This contribution was also evaluated by calculating the adsorption energetics of the descriptor molecules (H2O and the H and OER intermediates).

2.
ACS Omega ; 7(47): 42655-42663, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467922

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) has attracted considerable attention recently due to the potential conversion of atmospheric CO2 into useful organic products by utilizing electricity from renewable energy sources. However, the selective formation of desired products only via CO2RR has been elusive due to the presence of a myriad of competing reaction pathways, thus calling for effective strategies controlling the reaction coordinates. The control of binding energies of the reaction intermediate, such as *CO, is pivotal to manipulating reaction pathways, and various attempts have been made to accomplish this goal. Herein, we introduce recent endeavors to increase the catalytic selectivity of Cu-based catalysts by surface modification with polymer coating, which can change the local pH, hydrophilicity/hydrophobicity, reaction concentration, etc. The polymer conjugation also contributed to the enhanced electrocatalytic stability of Cu-based catalysts during the CO2RR. We also point to the remaining challenges and provide perspectives on the further development of Cu-polymer hybrid catalysts for the practical CO2RR.

3.
Acc Chem Res ; 55(7): 1015-1024, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35263076

RESUMO

ConspectusAtoms in a bulk solid phase are usually trapped to fixed positions and can change their position only under certain conditions (e.g., at a melting point) due to the high energy barrier of migration between positions within the crystal lattice. Contrary to the atoms in the bulk solid phase, however, atoms in nanoparticles can migrate and change their local positions rather easily, enabled by the high surface energies. The energy states of surface atoms of nanoparticles can be altered by surface-binding moieties, which in turn influence the intrananoparticle migration of atoms at the subsurface of nanoparticles. In 2008, this possibility of intrananoparticle migration was demonstrated with RhPd alloy nanoparticles under the different gas environments of reductive CO or oxidative NO. We envisaged that the explosive expansion of well-defined, multiphasic nanoparticle libraries might be realized by specifically dictating the atom migration direction, by modulating the energy state of specific atoms in the multiphasic nanocrystals. The nanoparticle surface energy is a function of a myriad of factors, namely, surface binding moiety, structural features affecting coordination number of atoms such as nanoparticle geometry, steps, and kinks, and the existence of heterointerface with lattice mismatch. Therefore, all these factors affecting atom energy state in the nanoparticle, categorically termed as "chemical field" (CF), can serve as the driving force for purposeful directional movement of atoms within nanoparticles and subsequent reaction. Geometrically well-defined multiphasic nanocrystals present great promises toward various applications with special emphasis on catalysis and thus are worthy synthetic targets. In recent years, we have demonstrated that manipulation of CFs is an effective synthetic strategy for a variety of geometrically well-defined multiphasic nanocrystals. Herein, we classified multiphasic nanocrystals into metallic alloy systems and ionic systems (metal compounds) because the modes of CF are rather different between these two systems. The migration-directing CFs for neutral metallic atoms are mostly based on the local distribution of elements, degree of alloying, or highly energetic structural features. On the other hand, for the ionic system, structural parameters originating from the discrepancy between cations and anions should be more considered; ionic radii, phase stability, lattice strain, anionic frameworks, cation vacancies, etc. can react as CFs affecting atom migration behavior in the multiphasic ionic nanocrystals. We expect that the limits and potentials of CF-based synthesis of multiphasic nanocrystals described in this work will open a wide avenue to diverse material compositions and geometries, which have been difficult or impossible to approach via conventional nanoparticle synthesis schemes.

4.
Small Methods ; 6(1): e2101236, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041273

RESUMO

Designing an efficient and durable electrocatalyst for the sluggish oxygen evolution reaction (OER) at the anode remains the foremost challenge in developing proton exchange membrane (PEM) electrolyzers. Here, a highly active and durable cactus-like nanoparticle with an exposed heterointerface between the IrO2 and the low oxidation state Ru by introducing a trace amount of Mn dopant is reported. The heterostructure fabrication relies on initial mixing of the Ru and Ir phases before electrochemical oxidation to produce a conjoined Ru/IrO2 heterointerface. Benefitting from electron transfer at the heterointerface, the low oxidation state Ru species shows excellent initial activity, which is maintained even after 180 h of continuous OER test. In a half-cell test, the Mn-doped RuIr nanocactus (Mn-RuIr NCT) achieves a mass activity of 1.85 A mgIr+Ru -1 at 1.48 VRHE , which is 139-fold higher than that of commercial IrO2 . Moreover, the superior electrocatalytic performance of Mn-RuIr NCT in the PEM electrolysis system ensures its viability in practical uses. The results of the excellent catalytic performance for acidic OER indicate that the heterostructuring robust rutile IrO2 and the highly active Ru species with a low oxidation state on the catalyst surface drive a synergistic effect.

5.
Small Methods ; 5(8): e2100285, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34927860

RESUMO

Recent interest in polymer electrolyte membranes (PEMs) for fuel cell systems has spurred the development of infiltration technology by which to insert ionomers into mechanically robust reinforcement structures by solution casting in order to produce a cost effective and highly efficient electrolyte. However, the results of the fabrication process often continue to present challenges related to the structural complexity and self-assembly dynamics between the hydrophobic and hydrophilic parts of the constituents which in turn, necessitates additional processing steps and increases production costs. Here, a single-step process is reported for highly compact polymeric composite membranes (PCMs), fabricated using a centrifugal colloidal casting (C3) method. Combined structural analyses as well as coarse-grained molecular dynamics simulations are employed to determine the micro-/macroscopic structural characteristics of the fabricated PCMs. These findings indicate that the C3 method is capable of forming highly dense ionomer matrix-reinforcement composites consisting of microphase-separated ionomer structures with tailored crystallinity and ionic cluster sizes. An outcome that is very unlikely with the single-step coating steps in conventional methods. These structural attributes ensure PCMs with better proton conductivity, greater strain stability, and lower gas crossover properties compared to commercial pristine membranes, expanding their possible range of applicability to PEMs.

6.
Small Methods ; 5(7): e2100400, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34927989

RESUMO

Alloy structures with high catalytic surface areas and tunable surface energies can lead to high catalytic selectivity and activities. Herein, the synthesis of sponge-like Pd3 Pb multiframes (Pd3 Pb MFs) is reported by using the thermodynamically driven phase segregation, which exhibit high selectivity (93%) for the conversion of furfural to furfuryl alcohol (FOL) under mild conditions. The excellent catalytic performance of the Pd3 Pb MF catalysts is attributed to the high surface area and optimized surface energy of the catalyst, which is associated with the introduction of Pb to Pd. Density functional theory calculations show that the binding energy of FOL to the surface energy-tuned Pd3 Pb MF is sufficiently lowered to prevent side reactions such as over-hydrogenation of FOL.

7.
Int Dent J ; 71(6): 462-476, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34839889

RESUMO

Periodontitis is a common disorder affecting >40% of adults in the United States. Globally, the severe form of the disease has a prevalence of 11%. In advanced cases, periodontitis leads to tooth loss and reduced quality of life. The aetiology of periodontitis is multifactorial. Subgingival dental biofilm elicits a host inflammatory and immune response, ultimately leading to irreversible destruction of the periodontium (i.e. alveolar bone and periodontal ligament) in a susceptible host. In order to successfully manage periodontitis, dental professionals must understand the pathogenesis, primary aetiology, risk factors, contributing factors and treatment protocols. Careful diagnosis, elimination of the causes and reduction of modifiable risk factors are paramount for successful prevention and treatment of periodontitis. Initial non-surgical periodontal therapy primarily consists of home care review and scaling and root planing. For residual sites with active periodontitis at periodontal re-evaluation, a contemporary regenerative or traditional resective surgical therapy can be utilised. Thereafter, periodontal maintenance therapy at a regular interval and long-term follow-ups are also crucial to the success of the treatment and long-term retention of teeth. The aim of this review is to provide current concepts of diagnosis, prevention and treatment of periodontitis. Both clinical and biological rationales will be discussed.


Assuntos
Periodontite , Qualidade de Vida , Adulto , Raspagem Dentária , Humanos , Periodontite/diagnóstico , Periodontite/epidemiologia , Periodontite/etiologia , Aplainamento Radicular
8.
Chem Asian J ; 16(22): 3630-3635, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34546639

RESUMO

Transition metal phosphides (TMPs) as ever-evolving electrocatalytic materials have attracted increasing attention in water splitting reactions owing to their cost-effective, highly active and stable catalytic properties. This work presents a facile synthetic route to NiCoP nanoparticles with Ru dopants which function as highly efficient electrocatalysts for oxygen evolution reaction (OER) in alkaline media. The Ru dopants induced a high content of Ni and Co vacancies in NiCoP nanoparticles, and the more defective Ru doped NiCoP phase than undoped NiCoP ones led to a greater number of catalytically active sites and improved electrical conductivity after undergoing electrochemical activation. The Ru doped NiCoP catalyst exhibited high OER catalytic performance in alkaline media with a low overpotential of 281 mV at 10 mA cm-2 and a Tafel slope of 42.7 mV dec-1 .

9.
Nano Lett ; 20(10): 7413-7421, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924501

RESUMO

Nanoframe alloy structures represent a class of high-performance catalysts for the oxygen reduction reaction (ORR), owing to their high active surface area, efficient molecular accessibility, and nanoconfinement effect. However, structural and chemical instabilities of nanoframes remain an important challenge. Here, we report the synthesis of PtCu nanoframes constructed with an atomically ordered intermetallic structure (O-PtCuNF/C) showing high ORR activity, durability, and chemical stability. We rationally designed the O-PtCuNF/C catalyst by combining theoretical composition predictions with a silica-coating-mediated synthesis. The O-PtCuNF/C combines intensified strain and ligand effects from the intermetallic PtCu L11 structure and advantages of the nanoframes, resulting in superior ORR activity to disordered alloy PtCu nanoframes (D-PtCuNF/C) and commercial Pt/C catalysts. Importantly, the O-PtCuNF/C showed the highest ORR mass activity among PtCu-based catalysts. Furthermore, the O-PtCuNF/C exhibited higher ORR durability and far less etching of constituent atoms than D-PtCuNF/C and Pt/C, attesting to the chemically stable nature of the intermetallic structure.

10.
Nanoscale ; 12(32): 17074-17082, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32785326

RESUMO

Developing highly efficient Ir-based electrocatalysts for the oxygen evolution reaction (OER) has been an important agenda in spearheading the water splitting technology. In this study, the synthesis of IrCo nanocacti on CoxSy nanocages (ICS NCs) is demonstrated by utilizing CoO@CoxSy nanoparticles as reactive nanotemplates. In addition to the high catalytic activities with a low overpotential of 281 mV at 10 mA cm-2 and an outstanding mass activity of 1285 mA mgIr-1 at 1.53 V, the ICS NCs endure a prolonged OER test for over 100 h, greatly outperforming other previously reported Ir-based electrocatalysts. This work suggests that the unique hetero-nanostructure of IrCo/CoxSy induces in situ S doping during electrochemical oxidation and the beneficial effect of S doping on the enhanced stability of ICS NCs for the OER.

11.
Adv Mater ; 32(33): e2001345, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32633878

RESUMO

The ever-increasing need for the production and expenditure of sustainable energy is a result of the astonishing rate of consumption of fossil fuels and the accompanying environmental problems. Emphasis is being directed to the generation of sustainable energy by the fuel cell and water splitting technologies. Accordingly, the development of highly efficient electrocatalysts has attracted significant interest, as the fuel cell and water splitting technologies are critically dependent on their performance. Among numerous catalyst designs under investigation, nanoframe catalysts have an intrinsically large surface area per volume and a tunable composition, which impacts the number of catalytically active sites and their intrinsic catalytic activity, respectively. Nevertheless, the structural integrity of the nanoframe during electrochemical operation is an ongoing concern. Some significant advances in the field of nanoframe catalysts have been recently accomplished, specifically geared to resolving the catalytic stability concerns and significantly boosting the intrinsic catalytic activity of the active sites. Herein, general synthetic concepts of nanoframe structures and their structure-dependent catalytic performance are summarized, along with recent notable advances in this field. A discussion on the remaining challenges and future directions, addressing the limitations of nanoframe catalysts, are also provided.

13.
Quintessence Int ; 51(10): 810-820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32577710

RESUMO

Biologic complications around dental implants may be categorized into peri-implant mucositis and peri-implantitis. Peri-implant mucositis is defined as reversible inflammation in the peri-implant mucosa without any apparent bone destruction. Peri-implantitis refers to inflammatory process that resulted in destruction of alveolar bone and attachment. Potential etiologic and contributing factors to both diseases are discussed in this review. By targeting and eliminating the etiologic factors nonsurgically as well as surgically, dental implants presenting with peri-implant diseases may be rescued, and then maintained with proper long-term peri-implant supportive therapy. Furthermore, clinical cases and their management are presented to demonstrate the available treatment options. Implant therapy should be carefully planned and executed with consideration of potential etiologic and contributing factors to developing biologic complications. During the initial consideration, patients should be informed of the potential biologic complications in dental implant therapy. Clinicians should monitor implants for any development or recurrence of peri-implant disease to ensure timely therapeutic intervention.


Assuntos
Perda do Osso Alveolar , Produtos Biológicos , Implantes Dentários , Mucosite , Peri-Implantite , Implantes Dentários/efeitos adversos , Humanos , Mucosite/etiologia , Peri-Implantite/etiologia , Peri-Implantite/terapia
14.
Adv Mater ; 32(17): e1908398, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32134526

RESUMO

Electrochemical reduction of carbon dioxide (CO2 RR) product distribution has been identified to be dependent on various surface factors, including the Cu facet, morphology, chemical states, doping, etc., which can alter the binding strength of key intermediates such as *CO and *OCCO during reduction. Therefore, in-depth knowledge of the Cu catalyst surface and identification of the active species under reaction conditions aid in designing efficient Cu-based electrocatalysts. This progress report categorizes various Cu-based electrocatalysts into four main groups, namely metallic Cu, Cu alloys, Cu compounds (Cu + non-metal), and supported Cu-based catalysts (Cu supported by carbon, metal oxides, or polymers). The detailed mechanisms for the selective CO2 RR are presented, followed by recent relevant developments on the synthetic procedures for preparing Cu and Cu-based nanoparticles. Herein, the potential link between the Cu surface and CO2 RR performance is highlighted, especially in terms of the chemical states, but other significant factors such as defective sites and roughened morphology of catalysts are equally considered during the discussion of current studies of CO2 RR with Cu-based electrocatalysts to fully understand the origin of the significant enhancement toward C2 formation. This report concludes by providing suggestions for future designs of highly selective and stable Cu-based electrocatalysts for CO2 RR.

15.
Nanoscale ; 12(2): 1118-1127, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31850427

RESUMO

Nanoparticles with an atomically ordered alloy phase have received enormous attention for application as catalysts in fuel cells because of their unique electronic properties resulting from unusually strong d-orbital interactions between two metal components. However, the synthesis of intermetallic nanoparticles requires a high reaction temperature, thus necessitating the protection of nanoparticles with inorganic layers to prevent aggregation of nanoparticles during synthesis. The protective layer needs to be removed later for application as a catalyst, which is a cumbersome process. Herein, a novel synthetic strategy is reported for the preparation of L10-PtZn intermetallic nanoparticles by utilizing Pt2+-exchanged ZIF-8 nanocubes as a solid-state precursor. The Pt2+-exchanged ZIF-8 phase plays a dual role as a metal ion source for L10-PtZn nanoparticles and as a carbonaceous matrix that restrains the aggregation of nanoparticles during thermal treatment. The L10-PtZn nanoparticles embedded in a hollow carbon nanocage obtained from one-step annealing of Pt2+-exchanged ZIF-8 showed better electrocatalytic activity and durability toward methanol oxidation under acidic electrolyte conditions than those obtained from commercial Pt/C catalysts.

16.
Quintessence Int ; 50(5): 370-376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915426

RESUMO

Cause-related therapy is key in the management and resolution of the two most common oral diseases: dental caries and periodontal disease. This is the first phase of treatment for those diseases. The aim is to remove, reduce, or eliminate the main causes of the disease. When referring to caries and periodontal disease, the primary etiology is bacterial plaque so the cause-related therapy phase should include plaque control as a major component. This can be achieved by constantly and continuously educating patients about the pathophysiology of the diseases and by helping them develop proper daily plaque removal techniques. Furthermore, various professional therapeutic interventions are delivered as necessary to eliminate or suppress other etiologic or risk factors. In this case series, the principles of proper cause-related therapy are demonstrated through three cases that were successfully managed by nonsurgical periodontal therapy. Biologic and clinical rationales are also discussed.


Assuntos
Cárie Dentária , Placa Dentária , Doenças Periodontais , Assistência Odontológica , Humanos , Higiene Bucal
17.
Nanoscale ; 10(45): 21178-21185, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30417184

RESUMO

Direct methanol fuel cell technology awaits the development of highly efficient and robust nanocatalysts driving the methanol oxidation reaction (MOR) in a CO poisoning-free fashion. Thus far, various Pt-based alloy nanoparticles have been studied as electrocatalysts toward the MOR, and it has been found that the introduction of dopants such as Ru and Cu to Pt has been particularly successful in mitigating the CO poisoning problem. Herein, we report a facile synthesis of Ru-branched RuPtCu nanocages that involves in situ formation of Ru-doped PtCu nanoparticles and subsequent outgrowth of Ru branches by insertion of additional Ru precursors. We show that the electrocatalytic activity and stability of Ru branched RuPtCu ternary nanocages toward the MOR are greatly improved compared to those of PtCu/C and RuPtCu/C counterparts and state-of-the-art PtRu/C and Pt/C catalysts, mainly due to the synergy between the CO-tolerant RuOx phase and the highly open and robust RuPtCu nanoframe.

18.
Chem Soc Rev ; 47(22): 8173-8202, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30009297

RESUMO

While the realization of clean and sustainable energy conversion systems primarily requires the development of highly efficient catalysts, one of the main issues had been designing the structure of the catalysts to fulfill minimum cost as well as maximum performance. Until now, noble metal-based nanocatalysts had shown outstanding performances toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the scarcity and high cost of them impeded their practical use. Recently, hollow nanostructures including nanocages and nanoframes had emerged as a burgeoning class of promising electrocatalysts. The hollow nanostructures could expose a high proportion of active surfaces while saving the amounts of expensive noble metals. In this review, we introduced recent advances in the synthetic methodologies for generating noble metal-based hollow nanostructures based on thermodynamic and kinetic approaches. We summarized electrocatalytic applications of hollow nanostructures toward the ORR, OER, and HER. We next provided strategies that could endow structural robustness to the flimsy structural nature of hollow structures. Finally, we concluded this review with perspectives to facilitate the development of hollow nanostructure-based catalysts for energy applications.

19.
Small ; 14(3)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29171686

RESUMO

The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni3 Cox @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru4+ ) species, which can be modulated by the core compositions.

20.
ACS Nano ; 11(6): 5500-5509, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28599106

RESUMO

Nanoframe electrocatalysts have attracted great interest due to their inherently high active surface area per a given mass. Although recent progress has enabled the preparation of single nanoframe structures with a variety of morphologies, more complex nanoframe structures such as a double-layered nanoframe have not yet been realized. Herein, we report a rational synthetic strategy for a structurally robust Ir-based multimetallic double-layered nanoframe (DNF) structure, nanoframe@nanoframe. By leveraging the differing kinetics of dual Ir precursors and dual transition metal (Ni and Cu) precursors, a core-shell-type alloy@alloy structure could be generated in a simple one-step synthesis, which was subsequently transformed into a multimetallic IrNiCu DNF with a rhombic dodecahedral morphology via selective etching. The use of single Ir precursor yielded single nanoframe structures, highlighting the importance of employing dual Ir precursors. In addition, the structure of Ir-based nanocrystals could be further controlled to DNF with octahedral morphology and CuNi@Ir core-shell structures via a simple tuning of experimental factors. The IrNiCu DNF exhibited high electrocatalytic activity for oxygen evolution reaction (OER) in acidic media, which is better than Ir/C catalyst. Furthermore, IrNiCu DNF demonstrated excellent durability for OER, which could be attributed to the frame structure that prevents the growth and agglomeration of particles as well as in situ formation of robust rutile IrO2 phase during prolonged operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...