Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 27(1): 127, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053161

RESUMO

Molecular self-assembly has received considerable attention in biomedical fields as a simple and effective method for developing biomolecular nanostructures. Self-assembled nanostructures can exhibit high binding affinity and selectivity by displaying multiple ligands/receptors on their surface. In addition, the use of supramolecular structure change upon binding is an intriguing approach to generate binding signal. Therefore, many self-assembled nanostructure-based biosensors have been developed over the past decades, using various biomolecules (e.g., peptides, DNA, RNA, lipids) and their combinations with non-biological substances. In this review, we provide an overview of recent developments in the design and fabrication of self-assembling biomolecules for biosensing. Furthermore, we discuss representative electrochemical biosensing platforms which convert the biochemical reactions of those biomolecules into electrical signals (e.g., voltage, ampere, potential difference, impedance) to contribute to detect targets. This paper also highlights the successful outcomes of self-assembling biomolecules in biosensor applications and discusses the challenges that this promising technology needs to overcome for more widespread use.

2.
J Nanosci Nanotechnol ; 16(5): 4480-2, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483777

RESUMO

CeO2 was synthesized hydrothermally in supercritical water and applied to the catalytic pyrolysis of xylan. Acetic acid, which is the main component in bio-oil produced from the non-catalytic pyrolysis of xylan, deteriorates the fuel quality of the oil. Catalysis over CeO2 effectively converted the acetic acid to ketone species, such as acetone, thereby reducing the acidity of the oil considerably. The content of aromatics in bio-oil was also increased substantially by catalysis.

3.
J Nanosci Nanotechnol ; 16(2): 1744-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433662

RESUMO

V-MCM-41, a mesoporous catalyst doped with V2O5, was applied for the first time to the removal of atmospheric NO. The quantity of V2O5 added was 10 wt% and 30 wt%. The characteristics of the synthesized catalysts were examined using XRD, N2 soprtion, and NH3-TPD. With increasing quantity of V2O5 added, specific surface area decreased and pore size increased. When the quantity of V2O5 was 10 wt%, the MCM-41 structure was retained, whereas considerable collapse of mesoporous structure was observed when 30 wt% V2O5 was added. The examination of acid characteristics using NH3-TPD showed that 30 wt% V-MCM-41 had the higher NH3 adsorption ability, implying that it would exhibit high activity for NH3 SCR reaction. In the NO removal experiments, 30 wt% V-MCM-41 showed much higher NO removal efficiency than 10 wt% V-MCM-41, which was attributed to its high NH3 adsorption ability.

4.
J Am Chem Soc ; 136(19): 6786-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24786337

RESUMO

This work reports the synthesis and application of metal-organic framework (MOF)@microporous organic network (MON) hybrid materials. Coating a MOF, UiO-66-NH2, with MONs forms hybrid microporous materials with hydrophobic surfaces. The original UiO-66-NH2 shows good wettability in water. In comparison, the MOF@MON hybrid materials float on water and show excellent performance for adsorption of a model organic compound, toluene, in water. Chemical etching of the MOF results in the formation of hollow MON materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...