Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(9): 11872-11879, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38406996

RESUMO

Recently, there has been an escalating demand for advanced materials with superior magnetic properties, especially in the actuator domain. High coercivity (Hci), an essential magnetic property, is pivotal for programmable shape changes in magnetic actuators and profoundly affects their performance. In this study, a new Sm2Fe17-xCuxN3 magnet with a high Hci was achieved by modifying the temperature of the reduction-diffusion process─lowering it from 900 to 700 °C through the introduction of Cu and finer control over the structure and morphology of the Sm2Fe17-xCuxN3 magnetic component within the actuator composite. Consequently, the Sm2Fe17-xCuxN3 magnet demonstrated a remarkable Hci of 11.5 kOe, eclipsing the value of 6.9 kOe attained by unalloyed Sm2Fe17N3 at reduced temperatures. By capitalizing on the enhanced magnetic properties of the Sm2Fe17-xCuxN3 composite and incorporating poly(ethylene glycol) into the elastomer matrix, we successfully fabricated a robust actuator. This innovative approach harnesses the strengths of hard magnets as actuators, offering stability under high-temperature conditions, precision control, longevity, wireless functionality, and energy efficiency, highlighting the vast potential of hard magnets for a range of applications.

2.
Sci Adv ; 9(21): eadg9671, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224243

RESUMO

Although many people suffer from sleep disorders, most are undiagnosed, leading to impairments in health. The existing polysomnography method is not easily accessible; it's costly, burdensome to patients, and requires specialized facilities and personnel. Here, we report an at-home portable system that includes wireless sleep sensors and wearable electronics with embedded machine learning. We also show its application for assessing sleep quality and detecting sleep apnea with multiple patients. Unlike the conventional system using numerous bulky sensors, the soft, all-integrated wearable platform offers natural sleep wherever the user prefers. In a clinical study, the face-mounted patches that detect brain, eye, and muscle signals show comparable performance with polysomnography. When comparing healthy controls to sleep apnea patients, the wearable system can detect obstructive sleep apnea with an accuracy of 88.5%. Furthermore, deep learning offers automated sleep scoring, demonstrating portability, and point-of-care usability. At-home wearable electronics could ensure a promising future supporting portable sleep monitoring and home healthcare.


Assuntos
Síndromes da Apneia do Sono , Qualidade do Sono , Humanos , Polissonografia , Sono , Síndromes da Apneia do Sono/diagnóstico , Encéfalo
3.
ACS Appl Mater Interfaces ; 14(34): 39255-39264, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975758

RESUMO

Electromagnetic wave (EMW)-absorbing materials, manufactured with composites of magnetic particles, are essential for maintaining a high complex permeability and modulated permittivity for impedance matching. However, commonly available EMW-absorbing materials are unsatisfactory owing to their low complex permeability in the high-frequency band. Herein, we report a thin, flexible EMW-absorbing membrane comprising shape-modulated FeCo nanobelts/boron nitride nanoparticles, which enables enhanced complex permeability in the S, C, and X bands (2-12 GHz). The boron nitride nanoparticles that are introduced to the FeCo nanobelts demonstrate control of the complex permittivity, leading to an effective impedance matching close to 1, consequently resulting in a high reflection loss value of -42.2 dB at 12.0 GHz with only 1.6 mm thickness. In addition, the incorporation of boron nitride nanoparticles improves the thermal conductivity for the heat dissipation of the absorbed electromagnetic wave energy. Overall, the comprehensive study of nanomaterial preparation and shape modulation technologies can lead to the fabrication of an excellent EMW-absorbing flexible composite membrane.

4.
Adv Sci (Weinh) ; 8(17): e2101037, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34218527

RESUMO

Skeletal muscle has a remarkable regeneration capacity to recover its structure and function after injury, except for the traumatic loss of critical muscle volume, called volumetric muscle loss (VML). Although many extremity VML models have been conducted, craniofacial VML has not been well-studied due to unavailable in vivo assay tools. Here, this paper reports a wireless, noninvasive nanomembrane system that integrates skin-wearable printed sensors and electronics for real-time, continuous monitoring of VML on craniofacial muscles. The craniofacial VML model, using biopsy punch-induced masseter muscle injury, shows impaired muscle regeneration. To measure the electrophysiology of small and round masseter muscles of active mice during mastication, a wearable nanomembrane system with stretchable graphene sensors that can be laminated to the skin over target muscles is utilized. The noninvasive system provides highly sensitive electromyogram detection on masseter muscles with or without VML injury. Furthermore, it is demonstrated that the wireless sensor can monitor the recovery after transplantation surgery for craniofacial VML. Overall, the presented study shows the enormous potential of the masseter muscle VML injury model and wearable assay tool for the mechanism study and the therapeutic development of craniofacial VML.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Músculo Masseter/lesões , Músculo Masseter/fisiopatologia , Nanoestruturas , Regeneração/fisiologia , Alicerces Teciduais , Dispositivos Eletrônicos Vestíveis , Animais , Modelos Animais de Doenças , Eletrônica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Nanoscale ; 13(27): 12004-12016, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34212957

RESUMO

Herein, we introduce novel 1-dimensional nano-chained FeCo particles with unusually-high permeability prepared by a highly-productive thermal plasma synthesis and demonstrate an electromagnetic wave absorber with exceptionally low reflection loss in the high-frequency regime (1-26 GHz). During the thermal plasma synthesis, spherical FeCo nanoparticles are first formed through the nucleation and growth processes; then, the high temperature zone of the thermal plasma accelerates the diffusion of constituent elements, leading to surface-consolidation between the particles at the moment of collision, and 1-dimensional nano-chained particles are successfully fabricated without the need for templates or a complex directional growth process. Systematic control over the composition and magnetic properties of FexCo1-x nano-chained particles also has been accomplished by changing the mixing ratio of the Fe-to-Co precursors, i.e. from 7 : 3 to 3 : 7, leading to a remarkably high saturation magnetization of 151-227 emu g-1. In addition, a precisely-controlled and uniform surface SiO2 coating on the FeCo nano-chained particles was found to effectively modulate complex permittivity. Consequently, a composite electromagnetic wave absorber comprising Fe0.6Co0.4 nano-chained particles with 2.00 nm-thick SiO2 surface insulation exhibits dramatically intensified permeability, thereby improving electromagnetic absorption performance with the lowest reflection loss of -43.49 dB and -10 dB (90% absorbance) bandwidth of 9.28 GHz, with a minimum thickness of 0.85 mm.

6.
Nanoscale ; 13(18): 8442-8451, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33908426

RESUMO

Metal conductive patterning has been studied as an alternative to the most commonly used indium tin oxide electrodes. Printed electrodes are fabricated by several complicated processes including etching, photolithography, and laser- and template-based techniques. However, these patterning methods have increasingly encountered critical issues of long manufacturing times and high equipment costs that necessitate vacuum and high-temperature conditions. In this study, we present a template-free solution-based patterning method for the fabrication of transparent electronics by inducing segregation-based networks of silver nanowires (SGAgNWs); this is a potential method to fabricate cost effective and scalable optoelectronics. Micro-dimensional fine-patterned segregated networks with conductive cells are created by the self-assembly of one-dimensional nanomaterials under optimal ink conditions wherein different types of solvents and aspect ratios of silver nanowires (AgNWs) are formulated. Photoelectric properties can be controlled by adjusting the size of the cell, which is an empty domain surrounded by the AgNW assembly with microscale cell-to-cell distance dimensions ranging between 4 to 345 µm. The as-obtained AgNW metal grid-formulated on a polyethylene terephthalate film-was identified as a high-performance transparent electrode (TE) device with excellent optoelectronic properties of 87.08% transmittance and 50 Ω â–¡-1 resistance. In addition, the electrical conductivity of the TE film is enhanced with a very low haze of less than 4% because of the intense pulsed light treatment that diminished the sheet resistance to 21.36 Ω â–¡-1, which is attributed to the creation of welded silver networks. The SGAgNW concept for TE technology demonstrates a very promising potential for use in next-generation flexible electronic devices.

7.
Sensors (Basel) ; 21(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430220

RESUMO

Sleep is an essential element to human life, restoring the brain and body from accumulated fatigue from daily activities. Quantitative monitoring of daily sleep quality can provide critical feedback to evaluate human health and life patterns. However, the existing sleep assessment system using polysomnography is not available for a home sleep evaluation, while it requires multiple sensors, tabletop electronics, and sleep specialists. More importantly, the mandatory sleep in a designated lab facility disrupts a subject's regular sleep pattern, which does not capture one's everyday sleep behaviors. Recent studies report that galvanic skin response (GSR) measured on the skin can be one indicator to evaluate the sleep quality daily at home. However, the available GSR detection devices require rigid sensors wrapped on fingers along with separate electronic components for data acquisition, which can interrupt the normal sleep conditions. Here, we report a new class of materials, sensors, electronics, and packaging technologies to develop a wireless, soft electronic system that can measure GSR on the wrist. The single device platform that avoids wires, rigid sensors, and straps offers the maximum comfort to wear on the skin and minimize disruption of a subject's sleep. A nanomaterial GSR sensor, printed on a soft elastomeric membrane, can have intimate contact with the skin to reduce motion artifact during sleep. A multi-layered flexible circuit mounted on top of the sensor provides a wireless, continuous, real-time recording of GSR to classify sleep stages, validated by the direct comparison with the standard method that measures other physiological signals. Collectively, the soft bioelectronic system shows great potential to be working as a portable, at-home sensor system for assessing sleep quality before a hospital visit.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrônica , Resposta Galvânica da Pele , Humanos , Polissonografia , Fases do Sono
8.
ACS Appl Mater Interfaces ; 12(44): 49398-49406, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33085453

RESUMO

Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces.


Assuntos
Algoritmos , Aprendizado Profundo , Eletrônica , Nanotecnologia , Dispositivos Eletrônicos Vestíveis , Humanos , Tamanho da Partícula , Propriedades de Superfície
9.
Biosens Bioelectron ; 165: 112404, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729524

RESUMO

Operant conditioning of Hoffmann's reflex (H-reflex) is a non-invasive and targeted therapeutic intervention for patients with movement disorders following spinal cord injury. The reflex-conditioning protocol uses electromyography (EMG) to measure reflexes from specific muscles elicited using transcutaneous electrical stimulation. Despite recent advances in wearable electronics, existing EMG systems that measure muscle activity for operant conditioning of spinal reflexes still use rigid metal electrodes with conductive gels and aggressive adhesives, while requiring precise positioning to ensure reliability of data across experimental sessions. Here, we present the first large-area epidermal electronic system (L-EES) and demonstrate its use in every step of the reflex-conditioning protocol. The L-EES is a stretchable and breathable composite of nanomembrane electrodes (16 electrodes in a four by four array), elastomer, and fabric. The nanomembrane electrode array enables EMG recording from a large surface area on the skin and the breathable elastomer with fabric is biocompatible and comfortable for patients. We show that L-EES can record direct muscle responses (M-waves) and H-reflexes, both of which are comparable to those recorded using conventional EMG recording systems. In addition, L-EES may improve the reflex-conditioning protocol; it has potential to automatically optimize EMG electrode positioning, which may reduce setup time and error across experimental sessions.


Assuntos
Técnicas Biossensoriais , Reflexo H , Condicionamento Operante , Eletrônica , Humanos , Reprodutibilidade dos Testes
10.
Nat Commun ; 11(1): 3450, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651424

RESUMO

Recent advances in nanomaterials and nano-microfabrication have enabled the development of flexible wearable electronics. However, existing manufacturing methods still rely on a multi-step, error-prone complex process that requires a costly cleanroom facility. Here, we report a new class of additive nanomanufacturing of functional materials that enables a wireless, multilayered, seamlessly interconnected, and flexible hybrid electronic system. All-printed electronics, incorporating machine learning, offers multi-class and versatile human-machine interfaces. One of the key technological advancements is the use of a functionalized conductive graphene with enhanced biocompatibility, anti-oxidation, and solderability, which allows a wireless flexible circuit. The high-aspect ratio graphene offers gel-free, high-fidelity recording of muscle activities. The performance of the printed electronics is demonstrated by using real-time control of external systems via electromyograms. Anatomical study with deep learning-embedded electrophysiology mapping allows for an optimal selection of three channels to capture all finger motions with an accuracy of about 99% for seven classes.


Assuntos
Técnicas Biossensoriais/métodos , Eletrônica/métodos , Grafite/química , Condutividade Elétrica , Humanos , Nanoestruturas/química , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio
11.
Sensors (Basel) ; 20(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531954

RESUMO

Wireless, flexible, ion-selective electrodes (ISEs) are of great interest in the development of wearable health monitors and clinical systems. Existing film-based electrochemical sensors, however, still have practical limitations due to poor electrical contact and material-interfacial leakage. Here, we introduce a wireless, flexible film-based system with a highly selective, stable, and reliable sodium sensor. A flexible and hydrophobic composite with carbon black and soft elastomer serves as an ion-to-electron transducer offering cost efficiency, design simplicity, and long-term stability. The sensor package demonstrates repeatable analysis of selective sodium detection in saliva with good sensitivity (56.1 mV/decade), stability (0.53 mV/h), and selectivity coefficient of sodium against potassium (-3.0). The film ISEs have an additional membrane coating that provides reinforced stability for the sensor upon mechanical bending. Collectively, the comprehensive study of materials, surface chemistry, and sensor design in this work shows the potential of the wireless flexible sensor system for low-profile wearable applications.


Assuntos
Eletrodos Seletivos de Íons , Sódio/análise , Tecnologia sem Fio , Íons/análise , Potássio/análise
12.
Sci Adv ; 6(11): eaay1729, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32201718

RESUMO

Recent advancements in electronic packaging and image processing techniques have opened the possibility for optics-based portable eye tracking approaches, but technical and safety hurdles limit safe implementation toward wearable applications. Here, we introduce a fully wearable, wireless soft electronic system that offers a portable, highly sensitive tracking of eye movements (vergence) via the combination of skin-conformal sensors and a virtual reality system. Advancement of material processing and printing technologies based on aerosol jet printing enables reliable manufacturing of skin-like sensors, while the flexible hybrid circuit based on elastomer and chip integration allows comfortable integration with a user's head. Analytical and computational study of a data classification algorithm provides a highly accurate tool for real-time detection and classification of ocular motions. In vivo demonstration with 14 human subjects captures the potential of the wearable electronics as a portable therapy system, whose minimized form factor facilitates seamless interplay with traditional wearable hardware.


Assuntos
Convergência Ocular , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Telemedicina/instrumentação , Telemedicina/métodos , Realidade Virtual , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Técnicas Biossensoriais , Humanos , Processamento de Sinais Assistido por Computador
13.
Biosens Bioelectron ; 151: 111981, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999588

RESUMO

Recent advances in biosensors, bioelectronics, and system integration allow the development of wristband-type devices for health and performance monitoring of athletes. Although these devices provide adequate sensing outputs, they suffer from signal loss due to improper contact of a rigid sensor with the skin. In addition, when a rubber band tightly secures the sensor to the skin, the gap between sensor and skin causes inevitable motion artifacts, resulting in corrupted data. Consequently, the rigidity and bulky form factor of the existing devices are not suitable for a practical use since athletes typically go through strenuous activities during training and matches. Here, we introduce a soft, wearable flexible hybrid electronics (WFHE) with integrated flexible sensors and circuits in an ultrathin, low-modulus elastomer. The thin-film bioelectronic system avoids the use of bulky, rigid sensors, while providing negligible mechanical and thermal burdens to the wearer. Enabling conformal contact between sensor and skin minimizes undesired motion artifacts. A set of computational and experimental studies of soft materials, flexible mechanics, and system packaging provides key fundamental design factors for a comfortable, reliable, waterproof bioelectronic system. Skin conformal WFHE with sparse signal reconstruction enables reliable, continuous monitoring of photoplethysmogram, heart rate, and activities of athletes. Development of a quantitative analysis between impact force and impact velocity extracted from motion acceleration provides an objective assessment of an athletic punching force. Collectively, this study shows the first demonstration of a wireless, soft, thin-film electronics for a real-time, reliable assessment of athletic health and performance.


Assuntos
Atletas , Técnicas Biossensoriais , Pele/química , Dispositivos Eletrônicos Vestíveis , Desempenho Atlético/fisiologia , Humanos , Conformação Molecular , Monitorização Fisiológica/métodos
14.
Adv Mater ; 32(15): e1901924, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31282063

RESUMO

Recent advances in soft materials and system integration technologies have provided a unique opportunity to design various types of wearable flexible hybrid electronics (WFHE) for advanced human healthcare and human-machine interfaces. The hybrid integration of soft and biocompatible materials with miniaturized wireless wearable systems is undoubtedly an attractive prospect in the sense that the successful device performance requires high degrees of mechanical flexibility, sensing capability, and user-friendly simplicity. Here, the most up-to-date materials, sensors, and system-packaging technologies to develop advanced WFHE are provided. Details of mechanical, electrical, physicochemical, and biocompatible properties are discussed with integrated sensor applications in healthcare, energy, and environment. In addition, limitations of the current materials are discussed, as well as key challenges and the future direction of WFHE. Collectively, an all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.


Assuntos
Técnicas Biossensoriais/métodos , Atenção à Saúde , Metabolismo Energético , Materiais Biocompatíveis/química , Técnicas Biossensoriais/instrumentação , Temperatura Corporal , Eletrônica , Fenômenos Eletrofisiológicos , Humanos , Pressão , Dispositivos Eletrônicos Vestíveis
15.
ACS Sens ; 4(5): 1417-1423, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31062586

RESUMO

Molecular detection and manipulation via nanofluidic systems offers new routes for single-molecule analysis to study epigenetic mechanisms and genetic mutation of disease. For detection of single biological molecule, many types of nanomicrofluidic systems have been utilized. Typically, mechanical tethering, fluidic pressure, chemical interactions, or electrical forces allow controllable attraction, enrichment, confinement, and elongation of target molecules. The currently available methods, however, are unable to offer both molecular manipulation and direct and concurrent assessment of target molecules in the system due to the nature of enclosed channels and associated fluidic components. Here, we introduce a wafer-scale nanofluidic system that incorporates an array of accessible open nanochannels and nano-microtrappers to enrich and elongate target molecules (DNA) via the combination of an electric field and hydrodynamic force. The open nanofluidic system allows easy access, direct observation, and manipulation of molecules in the nanochannels. The presence of a stretched single DNA and the efficacy of the nanofluidic system are studied by fluorescence microscopy and atomic force microscopy. Hybrid integration of the nanodevice fabrication with a material transfer printing technique enables to design a highly flexible and transferrable nanofluidic system after molecular concentration.


Assuntos
DNA/análise , Dispositivos Lab-On-A-Chip , Nanotecnologia/instrumentação , Desenho de Equipamento , Fenômenos Mecânicos
16.
ACS Appl Mater Interfaces ; 11(6): 6575-6580, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30663880

RESUMO

Selective filtration of near-infrared (NIR) regions is of primary importance to energy saving via thermal shielding. However, uniform coating of highly effective nanomaterials on flexible substrates remains very challenging. Here, we introduce new material processing and fabrication methodologies that manufacture electrospun copper sulfide/polyvinylpyrrolidone (CuS/PVP) nanowires for enhanced thermal shielding efficiency. Electrospinning offers well-dispersed CuS nanoparticles in a thermal shielding film, which is not achievable in typical solution coating processes. Directly deposited CuS/PVP nanowires on a flexible polymer membrane are enabled by a fluorination treatment that decreases the interfacial electrostatic repulsion. Monitoring of in situ temperature change of a box-shielded, CuS/PVP nanowire film demonstrates excellent NIR shielding efficiency (87.15%). Direct integration of the film with a model car and exposure to direct sunlight demonstrates about twice-higher shielding efficiency than commercial tungsten oxide films. Overall, the comprehensive study of nanomaterial preparation, surface treatment, and integration techniques allows the fabrication of highly flexible and reliable thermal shielding films.

17.
Adv Mater Technol ; 4(10)2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33043125

RESUMO

Recent advances in flexible materials, nanomanufacturing, and system integration have provided a great opportunity to develop wearable flexible hybrid electronics for human healthcare, diagnostics, and therapeutics. However, existing medical devices still rely on rigid electronics with many wires and separate components, which hinders wireless, comfortable, continuous monitoring of health-related human motions. Here, we introduce advanced materials and system integration technologies that enable a soft, active wireless, thin-film bioelectronics. The low-modulus, highly flexible wearable electronic system incorporates a nanomembrane wireless circuit and functional chip components, enclosed by a soft elastomeric membrane. The bioelectronic system offers a gentle, seamless mounting on the skin, while offering a comfortable, highly sensitive and accurate detection of head movements. We utilize the wireless wearable hybrid system for quantitative diagnostics of cervical dystonia (CD) that is characterized by involuntary abnormal head postures and repetitive head movements, sometimes with neck muscle pain. A set of analytical and experimental studies shows a soft system packaging, hard-soft materials integration, and quantitative assessment of physiological signals detected by the SKINTRONICS. In vivo demonstration, involving ten human subjects, captures the device feasibility for use in CD measurement.

18.
ACS Appl Mater Interfaces ; 10(50): 44071-44079, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30452228

RESUMO

Inkjet-printed electronics using metal particles typically lack electrical conductivity and interfacial adhesion with an underlying substrate. To address the inherent issues of printed materials, this Research Article introduces advanced materials and processing methodologies. Enhanced adhesion of the inkjet-printed copper (Cu) on a flexible polyimide film is achieved by using a new surface modification technique, a nanostructured self-assembled monolayer (SAM) of (3-mercaptopropyl)trimethoxysilane. A standardized adhesion test reveals the superior adhesion strength (1192.27 N/m) of printed Cu on the polymer film, while maintaining extreme mechanical flexibility proven by 100 000 bending cycles. In addition to the increased adhesion, the nanostructured SAM treatment on printed Cu prevents formation of native oxide layers. The combination of the newly synthesized Cu ink and associated sintering technique with an intense pulsed ultraviolet and visible light absorption enables ultrahigh conductivity of printed Cu (2.3 × 10-6 Ω·cm), which is the highest electrical conductivity reported to date. The comprehensive materials engineering technologies offer highly reliable printing of Cu patterns for immediate use in wearable flexible hybrid electronics. In vivo demonstration of printed, skin-conformal Cu electrodes indicates a very low skin-electrode impedance (<50 kΩ) without a conductive gel and successfully measures three types of biopotentials, including electrocardiograms, electromyograms, and electrooculograms.

19.
J Nanosci Nanotechnol ; 14(10): 7636-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25942840

RESUMO

In this study, CdSe core and CdSe/ZnSe core/shell quantum dots with a narrow size distribution were synthesized in a micro-reactor. A PMMA coating applied to the surface of CdSe/ZnSe core/shell QDs to prevent degradation gave improved dispersion stability compared to the CdSe core and CdSe/ZnSe core/shell. Many previous approaches to dispersion stability have not been quantitatively assessed. The dispersion stability was confirmed by multiple light scattering measurement. Additionally, the PMMA-coated CdSe/ZnSe QDs showed greatly improved optical properties with a photoluminescence quantum yield up to 80%. This structural motif is expected to prevent the degradation of QDs.


Assuntos
Compostos de Cádmio/química , Fenômenos Ópticos , Polimetil Metacrilato/química , Pontos Quânticos/química , Compostos de Selênio/química , Compostos de Zinco/química , Absorção Fisico-Química , Estabilidade de Medicamentos , Microtecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...