Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2400083, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717792

RESUMO

The regulation of complex energy metabolism is intricately linked to cellular energy demands. Caloric restriction (CR) plays a pivotal role in modulating the expression of genes associated with key metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle. In this study, the chronological lifespan (CLS) of 35 viable single-gene deletion mutants under both non-restricted and CR conditions, focusing on genes related to these metabolic pathways is evaluated. CR is found to increase CLS predominantly in mutants associated with the glycolysis and TCA cycle. However, this beneficial effect of CR is not observed in mutants of the glyoxylate cycle, particularly those lacking genes for critical enzymes like isocitrate lyase 1 (icl1Δ) and malate synthase 1 (mls1Δ). This analysis revealed an increase in isocitrate lyase activity, a key enzyme of the glyoxylate cycle, under CR, unlike the activity of isocitrate dehydrogenase, which remains unchanged and is specific to the TCA cycle. Interestingly, rapamycin, a compound known for extending lifespan, does not increase the activity of the glyoxylate cycle enzyme. This suggests that CR affects lifespan through a distinct metabolic mechanism.

2.
EMBO Rep ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671295

RESUMO

Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, deemed as a key cachectic factor in mice inoculated with colon carcinoma 26 (C26) cells, a widely used cancer cachexia model. Here we tested the causal role of IL-6 in cancer cachexia by knocking out the IL-6 gene in C26 cells. We found that the growth of IL-6 KO tumors was dramatically delayed. More strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. In addition, the knockout of leukemia inhibitory factor (LIF), another IL-6 family cytokine proposed as a cachectic factor in the model, also affected tumor growth but not cachexia. We further showed an increase in the infiltration of immune cell population in the IL-6 KO tumors compared with wild-type controls and the defective IL-6 KO tumor growth was rescued in immunodeficient mice while cachexia was not. Thus, IL-6 promotes tumor growth by facilitating immune evasion but is dispensable for cachexia.

3.
PLoS Pathog ; 20(2): e1012050, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422159

RESUMO

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Desidrogenase , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismo
4.
Res Sq ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260380

RESUMO

The role of glutathione peroxidase 4 (GPX4) in ferroptosis and various cancers is well-established; however, its specific contribution to colorectal cancer has been unclear. Surprisingly, in a genetic mouse model of colon tumors, the deletion of GPX4 specifically in colon epithelial cells increased tumor burden but decreased oxidized glutathione. Notably, this specific GPX4 deletion did not enhance susceptibility to dextran sodium sulfate (DSS)-induced colitis in mice with varied iron diets but showed vulnerability in mice with a vitamin E-deficient diet. Additionally, a high manganese diet heightened susceptibility, while a low manganese diet reduced DSS-induced colitis in colon epithelial-specific GPX4-deficient mice. Strikingly, the low manganese diet also significantly reduced colorectal cancer formation in both colon epithelial-specific GPX4-deficient and wildtype mice. Mechanistically, antioxidant proteins, especially manganese-dependent superoxide dismutase (MnSOD or SOD2), correlated with disease severity. Treatment with tempol, a superoxide dismutase mimetic radical scavenger, suppressed GPX4 deficiency-induced colorectal tumors. In conclusion, the study elucidates the critical role of GPX4 in inhibiting colorectal cancer progression by regulating oxidative stress in a manganese-dependent manner. The findings underscore the intricate interactions between GPX4, dietary factors, and their collective influence on colorectal cancer development, providing potential insights for personalized therapeutic strategies.

5.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873410

RESUMO

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2 , which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulates Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13 C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2 , label preferentially accumulates in methylglyoxal precursors dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accumulated lactate toxicity via a methylglyoxal pathway that has been proposed previously. The evolved lldD2 variants increase lactate incorporation to pyruvate but also alter flux in the methylglyoxal pathway, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX-1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provide context for the selective advantage of lldD2 mutations in adapting to host stress.

6.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205425

RESUMO

Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, which has been deemed a key cachectic factor in mice inoculated with the colon carcinoma 26 (C26) cells, one of the most widely used models of cancer cachexia. Here to test the causal role of IL-6 in cancer cachexia, we used CRISPR/Cas9 editing to knock out IL-6 in C26 cells. We found that growth of IL-6 KO C26 tumors was dramatically delayed. Most strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. We further showed an increase of immune cell populations in IL-6 KO tumors and the defective IL-6 KO tumor growth was rescued in immunodeficient mice. Thus, our results invalidated IL-6 as a necessary factor for causing cachexia in the C26 model and revealed instead its important role in regulating tumor growth via immune suppression.

7.
World J Mens Health ; 40(2): 316-329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35021315

RESUMO

PURPOSE: To build an age prediction model, we measured CD4+ and CD8+ cells, and humoral components in canine peripheral blood. MATERIALS AND METHODS: Large Belgian Malinois (BGM) and German Shepherd Dog (GSD) breeds (n=27), aged from 1 to 12 years, were used for this study. Peripheral bloods were obtained by venepuncture, then plasma and peripheral blood mononuclear cells (PBMCs) were separated immediately. Six myokines, including interleukin (IL)-6, IL-8, IL-15, leukemia inhibitory factor (LIF), growth differentiation factor 8 (GDF8), and GDF11 were measured from plasma and CD4+/CD8+ T-lymphocytes ratio were measured from PBMC. These parameters were then tested with age prediction models to find the best fit model. RESULTS: We found that the T-lymphocyte ratio (CD4+/CD8+) was significantly correlated with age (r=0.46, p=0.016). Among the six myokines, only GDF8 showed a significant correlation with age (r=0.52, p=0.005). Interestingly, these two markers showed better correlations in male dogs than females, and BGM breed than GSD. Using these two age biomarkers, we could obtain the best fit in a quadratic linear mixed model (r=0.77, p=3×10-6). CONCLUSIONS: Age prediction is a challenging task because of complication with biological age. Our quadratic linear mixed model using CD4+/CD8+ ratio and GDF8 level showed a meaningful age prediction.

8.
Exp Mol Med ; 53(6): 1092-1108, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34188179

RESUMO

Senescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model. These results imply coordinated aging-dependent reduction in the transmission of extrinsic signals to the nucleus and in the nucleus-to-cytoplasm supply of proteins/RNAs. We further showed that the aging-associated decrease in Sp1 transcription factor expression was critical for the downregulation of NCT. Our results suggest that NBIS is a modality of cellular senescence that may represent the nature of physiological aging in eukaryotes.


Assuntos
Senescência Celular , Proteômica , Núcleo Celular/metabolismo , Senescência Celular/genética , Regulação para Baixo
9.
J Gerontol A Biol Sci Med Sci ; 75(8): 1448-1456, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31541249

RESUMO

Budding yeast generate heterogeneous cells that can be separated into two distinctive cell types: short-living low-density and long-living high-density (HD) cells by density gradient centrifugation. We found that ethanol and acetate induce formation of HD cells, and mitochondrial respiration is required. From their transcriptomes and metabolomes, we found upregulated differentially expressed genes in HD cells involved in the RGT2/RGT1 glucose sensing pathway and its downstream genes encoding hexose transporters. For HD cells, we determined an abundance of various carbon sources including glucose, lactate, pyruvate, trehalose, mannitol, mannose, and galactose. Other upregulated differentially expressed genes in HD cells were involved in the TORC1-SCH9 signaling pathway and its downstream genes involved in cytoplasmic translation. We also measured an abundance of free amino acids in HD cells including valine, proline, isoleucine, and glutamine. These characteristics of the HD cell transcriptome and metabolome may be important conditions for maintaining a long-living phenotype.


Assuntos
Acetatos/farmacologia , Respiração Celular , Etanol/farmacologia , Longevidade , Saccharomyces cerevisiae/citologia , Senescência Celular , DNA Mitocondrial/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Potencial da Membrana Mitocondrial , Metaboloma , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
10.
Mol Cells ; 40(4): 307-313, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28427248

RESUMO

Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defects in 17 of these 33 ETC gene-deleted strains showed loss of both respiratory function and CR-induced CLS extension. On the contrary, the other 16 respiration-capable mutants showed increased CLS upon CR along with increased mitochondrial membrane potential (MMP) and intracellular adenosine triphosphate (ATP) levels, with decreased mitochondrial superoxide generation. We measured the same parameters in the 17 non-respiratory mutants upon CR. CR simultaneously increased MMP and mitochondrial superoxide generation without altering intracellular ATP levels. In conclusion, respiration is essential for CLS extension by CR and is important for balancing MMP, ROS, and ATP levels.


Assuntos
Senescência Celular/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Respiração Celular/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Fatores de Tempo
11.
Mol Cells ; 38(12): 1054-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26608359

RESUMO

Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 (sdh1Δ, sdh2Δ, sdh4Δ, cor1Δ, cyt1Δ, qcr7Δ, qcr8Δ, rip1Δ, cox6Δ, cox7Δ, cox9Δ, atp4Δ, atp7Δ, and atp17Δ) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-F1F0-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Deleção de Genes , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Superóxidos/metabolismo
12.
FEBS Lett ; 589(3): 349-57, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25541485

RESUMO

Down-regulation of intracellular nutrient signal pathways was proposed to be a primary mechanism of caloric restriction (CR)-mediated lifespan extension. However, the link between lifespan and glucose sensors in the plasma membrane was poorly understood in yeast. Herein, a mutant that lacked glucose sensors (snf3Δrgt2Δ) had impaired glucose fermentation, showed decreased chronological lifespan (CLS), and reduced CLS extension by CR. The mutant also had reduced mitochondrial efficiency, as inferred by increased mitochondrial superoxide and decreased ATP levels. Mth1 and Std1, which are downstream effectors of the Snf3/Rgt2 pathway, were required for viability through mitochondrial function but not fermentative metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Longevidade/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Restrição Calórica , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Longevidade/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Saccharomyces cerevisiae , Transdução de Sinais/genética
13.
Exp Gerontol ; 48(12): 1455-68, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24126084

RESUMO

Caloric restriction (CR) is the best-studied intervention known to delay aging and extend lifespan in evolutionarily distant organisms ranging from yeast to mammals in the laboratory. Although the effect of CR on lifespan extension has been investigated for nearly 80years, the molecular mechanisms of CR are still elusive. Consequently, it is important to understand the fundamental mechanisms of when and how lifespan is affected by CR. In this study, we first identified the time-windows during which CR assured cellular longevity by switching cells from culture media containing 2% or 0.5% glucose to water, which allows us to observe CR and non-calorically-restricted cells under the same conditions. We also constructed time-dependent gene expression profiles and selected 646 genes that showed significant changes and correlations with the lifespan-extending effect of CR. The positively correlated genes participated in transcriptional regulation, ribosomal RNA processing and nuclear genome stability, while the negatively correlated genes were involved in the regulation of several metabolic pathways, endoplasmic reticulum function, stress response and cell cycle progression. Furthermore, we discovered major upstream regulators of those significantly changed genes, including AZF1 (YOR113W), HSF1 (YGL073W) and XBP1 (YIL101C). Deletions of two genes, AZF1 and XBP1 (HSF1 is essential and was thus not tested), were confirmed to lessen the lifespan extension mediated by CR. The absence of these genes in the tor1Δ and ras2Δ backgrounds did show non-overlapping effects with regard to CLS, suggesting differences between the CR mechanism for Tor and Ras signaling.


Assuntos
Restrição Calórica , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Longevidade/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica/métodos , Glucose/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutação , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
Biochem Biophys Res Commun ; 441(1): 236-42, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24141116

RESUMO

Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process.


Assuntos
Restrição Calórica , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Sirolimo/farmacologia , Fatores de Tempo
15.
Cancer Biol Ther ; 10(4): 354-61, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20534983

RESUMO

Activation of Janus kinases (JAKs) and Signal Transducers and Activators of Transcription (STATs) plays a crucial role in cell survival and proliferation. The JAK/STAT signaling pathway has received a great deal of attention as a therapeutic target for the treatment of cancer. Thus, the identification of a compound that blocks this pathway would contribute significantly to growth inhibition and apoptosis of tumor cells. The antitumor alkaloid camptothecin (CPT) may be useful in the treatment of certain cancer, but the effects of this drug on colon cancer cells remain largely undefined. The purpose of the present study was to characterize the effects of CPT on human colon cancer cells and to determine the cellular mechanisms involved in CPT-mediated cell inhibition. The cellular determinants for CPT activity were studied in six colon cancer cell lines; these cell lines exhibited natural differences in sensitivity to CPT and could be ranked according to increasing resistance levels in the order Lovo < SW48 < HCT116 < HCT8 < HT29 < WiDr. Our findings suggest that JAK2 is necessary for induction of apoptosis following CPT treatment. Inhibition of JAK2 and STAT3 Tyr705 phosphorylation decreased the expression of STAT3 downstream target genes such as Bcl-2, Bcl-x(L) and Mcl-1. Finally, we show that JAK2 mRNA expression to be a better determination for CPT sensitivity than the topoisomerase-I activity or mRNA expression.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Janus Quinase 2/metabolismo , Fatores de Transcrição STAT/metabolismo , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Resistencia a Medicamentos Antineoplásicos , Imunofluorescência , Expressão Gênica , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...