Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 285, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001058

RESUMO

Optical gain enhancement of two-dimensional CsPbBr3 nanosheets was studied when the amplified spontaneous emission is guided by a patterned structure of polyurethane-acrylate. Given the uncertainties and pitfalls in retrieving a gain coefficient from the variable stripe length method, a gain contour [Formula: see text] was obtained in the plane of spectrum energy (ℏω) and stripe length (x), whereby an average gain was obtained, and gain saturation was analysed. Excitation and temperature dependence of the gain contour show that the waveguide enhances both gain and thermal stability due to the increased optical confinement and heat dissipation, and the gain origins were attributed to the two-dimensional excitons and the localized states.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839084

RESUMO

The optical modal gain of Cd0.6Zn0.4Te/ZnTe double quantum dots was measured using a variable stripe length method, where large and small quantum dots are separated with a ZnTe layer. With a large (~18 nm) separation layer thickness of ZnTe, two gain spectra were observed, which correspond to the confined exciton levels of the large and small quantum dots, respectively. With a small (~6 nm) separation layer thickness of ZnTe, a merged single gain spectrum was observed. This can be attributed to a coupled state between large and small quantum dots. Because the density of large quantum dots (4 × 1010 cm-2) is twice the density of small quantum dots (2 × 1010 cm-2), the density of the coupled quantum dots is determined by that of small quantum dots. As a result, we found that the peak gain (123.9 ± 9.2 cm-1) with the 6 nm separation layer is comparable to that (125.2 ± 29.2 cm-1) of the small quantum dots with the 18 nm separation layer.

3.
Microsyst Nanoeng ; 8: 98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119375

RESUMO

As a new concept in materials design, a variety of strategies have been developed to fabricate optical microlens arrays (MLAs) that enable the miniaturization of optical systems on the micro/nanoscale to improve their characteristic performance with unique optical functionality. In this paper, we introduce a cost-effective and facile fabrication process on a large scale up to ~15 inches via sequential lithographic methods to produce thin and deformable hexagonally arranged MLAs consisting of polydimethylsiloxane (PDMS). Simple employment of oxygen plasma treatment on the prestrained MLAs effectively harnessed the spontaneous formation of highly uniform nanowrinkled structures all over the surface of the elastomeric microlenses. With strain-controlled tunability, unexpected optical diffraction patterns were characterized by the interference combination effect of the microlens and deformable nanowrinkles. Consequently, the hierarchically structured MLAs presented here have the potential to produce desirable spatial arrangements, which may provide easily accessible opportunities to realize microlens-based technology by tunable focal lengths for more advanced micro-optical devices and imaging projection elements on unconventional security substrates.

4.
Opt Express ; 30(4): 6425-6439, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209581

RESUMO

We present an optical method that combines confocal microscopy with position modulation to perform axial tracking and topographic imaging of fluorescent surfaces. Using a remote focusing system, the confocal observation volume is oscillated in the axial direction. The resulting modulation of the detected signal is used as a feedback to precisely control the distance to an object of interest. The accuracy of this method is theoretically analyzed and the axial-locking accuracy is experimentally evaluated. Topographic imaging is demonstrated on fluorescently coated beads and fixed cells. This microscope allows for nanometric topography or tracking of dynamic fluorescent surfaces.

5.
Nanomaterials (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616094

RESUMO

Localized states in an anisotropic single GaAs quantum ring were investigated in terms of polarization dependence of micro-photoluminescence spectrum at 5K. Given four Stokes parameters measured with a pair of linear polarizers and waveplates, the elliptical polarization states of two different vertical confinement states (k=1 and k=2) were compared with phase, rotation, and ellipticity angles. While the polarized emission intensity of the k=2 states becomes enhanced along [1,1,0] compared to that along [1,1¯,0], the polarization asymmetry of the k=1 states shows the opposite result. We conclude the polarization state is determined by the shape of the lateral wavefunctions. In the k=2 state, crescent-like wavefunctions are strongly localized, but the k=1 state consists of two crescent-like wavefunctions, which are connected weakly through quantum tunneling.

6.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34947657

RESUMO

We measured optical modal gain of a dye-virus hybrid structure using a variable stripe length method, where Alexa-fluor-488 dye was coated on a virus assembly of M13 bacteriophage. Inspired by the structural periodicity of the wrinkle-like virus assembly, the edge emission of amplified spontaneous emission was measured for increasing excited optical stripe length, which was aligned to be either parallel or perpendicular to the wrinkle alignment. We found that the edge emission showed a strong optical anisotropy, and a spectral etalon also appeared in the gain spectrum. These results can be attributed to the corrugated structure, which causes a similar effect to a DFB laser, and we also estimated effective cavity lengths.

7.
Light Sci Appl ; 9: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566170

RESUMO

We find that the emission from laterally coupled quantum dots is strongly polarized along the coupled direction [1 1 ¯ 0], and its polarization anisotropy can be shaped by changing the orientation of the polarized excitation. When the nonresonant excitation is linearly polarized perpendicular to the coupled direction [110], excitons (X1 and X2) and local biexcitons (X1X1 and X2X2) from the two separate quantum dots (QD1 and QD2) show emission anisotropy with a small degree of polarization (10%). On the other hand, when the excitation polarization is parallel to the coupled direction [1 1 ¯ 0], the polarization anisotropy of excitons, local biexcitons, and coupled biexcitons (X1X2) is enhanced with a degree of polarization of 74%. We also observed a consistent anisotropy in the time-resolved photoluminescence. The decay rate of the polarized photoluminescence intensity along the coupled direction is relatively high, but the anisotropic decay rate can be modified by changing the orientation of the polarized excitation. An energy difference is also observed between the polarized emission spectra parallel and perpendicular to the coupled direction, and it increases by up to three times by changing the excitation polarization orientation from [110] to [1 1 ¯ 0]. These results suggest that the dipole-dipole interaction across the two separate quantum dots is mediated and that the anisotropic wavefunctions of the excitons and biexcitons are shaped by the excitation polarization.

8.
Opt Express ; 27(20): 27841-27850, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684545

RESUMO

We demonstrate that the Stimulated Emission Depletion (STED) concept, which is usually invoked for fluorescence, can be extended to photoacoustic effects. When two-nanosecond pulses of exciting and stimulating light are synchronized, 80% of the acoustic signal generated through excited state absorption (ESA) can be quenched. Regarding the cross-sections for stimulated emission and ESA, a model gives a good order of magnitude in the depletion efficiency. The transient molecular orientation, usually measured via the fluorescence anisotropy, can be accessed in photoacoustic when STED is implemented.

9.
Polymers (Basel) ; 11(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330963

RESUMO

We recently implemented highly sensitive detection systems for photo-sensitizing potassium ions (K+) based on two-step Förster resonance energy transfer (FRET). As a successive study for quantitative understanding of energy transfer processes in terms of the exciton population, we investigated the fluorescence decay dynamics in conjugated polymers and an aptamer-based 6-carboxyfluorescein (6-FAM)/6-carboxytetramethylrhodamine (TAMRA) complex. In the presence of K+ ions, the Guanine-rich aptamer enabled efficient two-step resonance energy transfer from conjugated polymers to dyed pairs of 6-FAM and TAMRA through the G-quadruplex phase. Although the fluorescence decay time of TAMRA barely changed, the fluorescence intensity was significantly increased. We also found that 6-FAM showed a decreased exciton population due the compensation of energy transfer to TAMRA by FRET from conjugated polymers, but a fluorescence quenching also occurred concomitantly. Consequently, the fluorescence intensity of TAMRA showed a 4-fold enhancement, where the initial transfer efficiency (~300%) rapidly saturated within ~0.5 ns and the plateau of transfer efficiency (~230%) remained afterward.

10.
Sci Rep ; 9(1): 496, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679611

RESUMO

An M13 bacteriophage-based Förster resonance energy transfer (FRET) system is developed to estimate intermolecular distance at the nanoscale using a complex of CdSSe/ZnS nanocrystal quantum dots, genetically engineered M13 bacteriophages labeled with fluorescein isothiocyanate and trinitrotoluene (TNT) as an inhibitor. In the absence of trinitrotoluene, it is observed that a significant spectral shift from blue to green occur, which represents efficient energy transfer through dipole-dipole coupling between donor and acceptor, or FRET-on mode. On the other hand, in the presence of trinitrotoluene, the energy transfer is suppressed, since the donor-to-acceptor intermolecular distance is detuned by the specific capturing of TNT by the M13 bacteriophage, denoted as FRET-off mode. These noble features are confirmed by changes in the fluorescence intensity and the fluorescence decay curve. TNT addition to our system results in reducing the total energy transfer efficiency considerably from 16.1% to 7.6% compared to that in the non-TNT condition, while the exciton decay rate is significantly enhanced. In particular, we confirm that the energy transfer efficiency satisfies the original intermolecular distance dependence of FRET. The relative donor-to-acceptor distance is changed from 70.03 Å to 80.61 Å by inclusion of TNT.


Assuntos
Bacteriófago M13/química , Transferência Ressonante de Energia de Fluorescência , Modelos Químicos , Pontos Quânticos/química , Trinitrotolueno/química
11.
Nano Lett ; 18(10): 6188-6194, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30223652

RESUMO

We found that optical Aharonov-Bohm oscillations in a single GaAs/GaAlAs quantum ring can be controlled by excitation intensity. With a weak excitation intensity of 1.2 kW cm-2, the optical Aharonov-Bohm oscillation period of biexcitons was observed to be half that of excitons in accordance with the period expected for a two-exciton Wigner molecule. When the excitation intensity is increased by an order of magnitude (12 kW cm-2), a gradual deviation of the Wigner molecule condition occurs with decreased oscillation periods and diamagnetic coefficients for both excitons and biexcitons along with a spectral shift. These results suggest that the effective orbit radii and rim widths of electrons and holes in a single quantum ring can be modified by light intensity via photoexcited carriers, which are possibly trapped at interface defects resulting in a local electric field.

12.
Opt Express ; 25(16): 18917-18928, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041083

RESUMO

We report a novel optical resolution photoacoustic microscopy concept to obtain an axial resolution only by optical methods. The photoacoustic signal is generated through a non-radiative relaxation from a level that is populated by excited state absorption. This two-step excitation process of a single laser enables to achieve an optical sectioning without any acoustic selectivity, whereby a full optical resolution photoacoustic microscopy is obtained. We bring a proof of this concept using Rhodamine and Zinc Tetraphenylporphyrin dyes known for their efficient excited state absorption process.

13.
Sci Rep ; 7: 40026, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28053350

RESUMO

Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.

14.
Nano Lett ; 16(12): 7755-7760, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960477

RESUMO

We find that the exciton dipole-dipole interaction in a single laterally coupled GaAs/AlGaAs quantum dot structure can be controlled by the linear polarization of a nonresonant optical excitation. When the excitation intensity is increased with the linearly polarized light parallel to the lateral coupling direction [11̅0], excitons (X1 and X2) and local biexcitons (X1X1 and X2X2) of the two separate quantum dots (QD1 and QD2) show a redshift along with coupled biexcitons (X1X2), while neither coupled biexcitons nor a redshift are observed when the polarization of the exciting beam is perpendicular to the coupling direction. The polarization dependence and the redshift are attributed to an optical nonlinearity in the exciton Förster resonant energy transfer interaction, whereby exciton population transfer between the two quantum dots also becomes significant with increasing excitation intensity. We have further distinguished coupled biexcitons from local biexcitons by their large diamagnetic coefficient.

15.
Nano Lett ; 16(1): 27-33, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26648477

RESUMO

The Aharonov-Bohm effect in ring structures in the presence of electronic correlation and disorder is an open issue. We report novel oscillations of a strongly correlated exciton pair, similar to a Wigner molecule, in a single nanoquantum ring, where the emission energy changes abruptly at the transition magnetic field with a fractional oscillation period compared to that of the exciton, a so-called fractional optical Aharonov-Bohm oscillation. We have also observed modulated optical Aharonov-Bohm oscillations of an electron-hole pair and an anticrossing of the photoluminescence spectrum at the transition magnetic field, which are associated with disorder effects such as localization, built-in electric field, and impurities.

16.
Opt Express ; 20(18): 19735-43, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037026

RESUMO

We propose an amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots. When the local surface plasmon of a spherical Au quantum dot is in resonance with the exciton energy level of a CdSe quantum dot, a significant enhancement of the linear and nonlinear refractive index is found in both the real and imaginary terms via the interaction with the dipole field of the local surface plasmon. Given a gating pulse intensity, an elliptical polarization induced by the phase retardation is described in terms of elliptical and rotational angles. In the case that a larger excitation than the bleaching intensity is applied, the signal light can be amplified due to the presence of gain in the CdSe quantum dot. This enables a longer propagation of the signal light relative to the metal loss, resulting in more feasible polarization modulation.


Assuntos
Amplificadores Eletrônicos , Compostos de Cádmio/química , Ouro/química , Pontos Quânticos , Compostos de Selênio/química , Ressonância de Plasmônio de Superfície/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
17.
J Nanosci Nanotechnol ; 12(3): 2919-23, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755142

RESUMO

The ultrafast spin dynamics of the bright exciton in CdSe/ZnS nanocrystal quantum dots has been investigated using a circularly polarized pump-probe experiment. A remarkably fast spin flip (-500 fs) of the bright exciton was observed at 4 K, which is attributed to the anisotropic electron-hole exchange interaction and the random positioning of nanocrystal quantum dots. In the presence of an applied magnetic field (5 T), the exciton spin parallel to the external magnetic field was favored due to Zeeman splitting. We found that this imbalance can possibly be suppressed by the state-blocking and the mixing of the 1(L) and 1(U) states in asymmetric quantum dots.

18.
J Nanosci Nanotechnol ; 12(10): 7733-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23421134

RESUMO

The ultrafast dynamics of Förster resonance energy transfer (FRET) and photo-induced charge transfer (PCT) has been investigated in an electrostatic complex of a fluorescein-labeled single-stranded DNA (as a FRET acceptor) and a cationic polyfluorene copolymer (as a FRET donor). The donor-acceptor intermolecular distance and total energy transfer efficiency are determined for a polymer/DNA complex with two different counter-ions and compared with those obtained using a theoretical model by considering the competition between FRET and PCT processes. The maximum total energy transfer efficiency (0.47) was estimated at the optimum donor-acceptor intermolecular distance of 39.6 A.


Assuntos
Corantes/química , DNA/química , Fluorenos/química , Luz , Cátions , Transferência Ressonante de Energia de Fluorescência
19.
Phys Chem Chem Phys ; 12(47): 15482-9, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20976320

RESUMO

The solvent effects were studied in fluorescence resonance energy transfer (FRET) from a cationic polyfluorene copolymer (FHQ, FPQ) to a fluorescein (Fl)-labelled oligonucleotide (ssDNA-Fl). Upon addition of dimethyl sulfoxide (DMSO), the optical properties of polymers and the probe dye were substantially modified and the FRET-induced PL signal was enhanced 3.8-37 times, relative to that in phosphate buffer solution (PBS). The hydrophobic interaction between polymers and ssDNA-Fl is expected to decrease in the presence of DMSO, which induces the weaker polymer/ssDNA-Fl complexation with longer intermolecular donor-acceptor separation and perturbs the competition between the FRET and PL quenching processes such as photo-induced charge transfer. The gradual decrease in Fl PL quenching with increasing the DMSO content was investigated by measuring the Stern-Volmer quenching constants (3.3-4.2 × 10(6) M(-1) in PBS, 0.56-1.1 × 10(6) M(-1) in 80 vol% DMSO) and PL lifetime of the excited Fl* in polymer/ssDNA-Fl (600 ps in PBS and 2120 ps in 80 vol% DMSO for FHQ/ssDNA-Fl) in PBS/DMSO mixtures. The substantially reduced PL quenching would amplify the resulting FRET Fl signal. The signal amplification in real DNA detection was also demonstrated with fluorescein-labelled PNA (probe PNA) in the presence of a complementary target DNA and noncomplementary DNA in aqueous DMSO solutions. This approach suggests a simple way of modifying the fine-structure of polymer/ssDNA-Fl and improving the detection sensitivity in conjugated polymer-based FRET bioassays.


Assuntos
DNA de Cadeia Simples/química , Transferência Ressonante de Energia de Fluorescência/métodos , Polímeros/química , Solventes/química , Dimetil Sulfóxido/química , Fluorenos/química , Fluoresceína/química , Ácidos Nucleicos Peptídicos/química
20.
J Phys Chem B ; 114(29): 9684-90, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20593766

RESUMO

Two-photon absorption properties of 1,4-bis{4'-[N,N-bis(6''-trimethylammoniumhexyl)amino]styryl}benzene tetrabromide (C1) and its inclusion complexes (ICs) with cyclodextrins (CDs) have been studied. Upon complexation with CDs, the absorption spectra of C1 showed a slight red shift, whereas the emission spectra showed a blue shift with concomitant increase in the fluorescence quantum efficiency. A Stern-Volmer study using K(3)Fe(CN)(6) as a quencher revealed significant reduction in the photoinduced charge transfer quenching, in accord with the IC formation. Comparison of the spectroscopic results reveals that C1 forms increasingly more stable ICs in the order C1/beta-CD < C1/gamma-CD < C1/(3gamma:beta)-CD (gamma-CD/beta-CD 3:1, mole ratio). Moreover, the two-photon action cross section of C1 increased from 200 GM for C1 to 400 GM for C1/beta-CD, 460 GM for C1/gamma-CD, and 650 GM for C1/(3gamma:beta)-CD, respectively. Furthermore, the two-photon microscopy images of HeLa cells stained with C1 emitted strong two-photon excited fluorescence in the plasma membrane. These results provide a useful guideline for the development of efficient two-photon materials for bioimaging applications.


Assuntos
Ciclodextrinas/química , Fótons , Compostos de Amônio Quaternário/química , Estilbenos/química , Absorção , Ferricianetos/química , Células HeLa , Humanos , Teoria Quântica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...