Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308066, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057129

RESUMO

Porous carbons are important electrode materials for supercapacitors. One of the challenges associated with supercapacitors is improving their energy density without relying on pseudocapacitance, which is based on fast redox reactions that often shorten device lifetimes. A possible solution involves achieving high total capacitance (Ctot ), which comprises Helmholtz capacitance (CH ) and possibly quantum capacitance (CQ ), in high-surface carbon materials comprising minimally stacked graphene walls. In this work, a templating method is used to synthesize 3D mesoporous graphenes with largely identical pore structures (≈2100 m2 g-1 with an average pore size of ≈7 nm) but different concentrations of oxygen-containing functional groups (0.3-6.7 wt.%) and nitrogen dopants (0.1-4.5 wt.%). Thus, the impact of the heteroatom functionalities on Ctot is systematically investigated in an organic electrolyte excluding the effect of pore structures. It is found that heteroatom functionalities determine Ctot , resulting in the cyclic voltammetry curves being rectangular or butterfly-shaped. The nitrogen functionalities are found to significantly enhance Ctot owing to increased CQ .

2.
Chemistry ; 29(53): e202302594, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37607317

RESUMO

Invited for the cover of this issue are Takashi Kyotani, Tetsuji Itoh and co-workers at Tohoku University, Gunma University and AIST. The image depicts the synthesis of water-dispersible carbon nano-test tubes by using a template technique and the selective adsorption of DNA into the inner space of these test tubes. Read the full text of the article at 10.1002/chem.202301422.


Assuntos
Carbono , DNA , Humanos , Adsorção , Universidades , Água
3.
Chem Sci ; 14(32): 8448-8457, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592983

RESUMO

The structural evolution of highly mesoporous templated carbons is examined from temperatures of 1173 to 2873 K to elucidate the optimal conditions for facilitating graphene-zipping reactions whilst minimizing graphene stacking processes. Mesoporous carbons comprising a few-layer graphene wall display excellent thermal stability up to 2073 K coupled with a nanoporous structure and three-dimensional framework. Nevertheless, advanced temperature-programmed desorption (TPD), X-ray diffraction, and Raman spectroscopy show graphene-zipping reactions occur at temperatures between 1173 and 1873 K. TPD analysis estimates zipping reactions lead to a 1100 fold increase in the average graphene-domain, affording the structure a superior chemical stability, electrochemical stability, and electrical conductivity, while increasing the bulk modulus of the framework. At above 2073 K, the carbon framework shows a loss of porosity due to the development of graphene-stacking structures. Thus, a temperature range between 1873 and 2073 K is preferable to balance the developed graphene domain size and high porosity. Utilizing a neutron pair distribution function and soft X-ray emission spectra, we prove that these highly mesoporous carbons already consist of a well-developed sp2-carbon network, and the property evolution is governed by the changes in the edge sites and stacked structures.

4.
Chemistry ; 29(53): e202301422, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37392079

RESUMO

Water-dispersible carbon nano-test tubes (CNTTs) with an inner and outer diameter of about 25 and 35 nm, respectively, were prepared by the template technique and then their inner carbon surface was selectively oxidized to introduce carboxy groups. The adsorption behavior of DNA molecules on the oxidized CNTTs (Ox-CNTTs) was examined in the presence of Ca2+ cations. Many DNA molecules are attracted to the inner space of Ox-CNTTs based on the Ca2+ -mediated electrostatic interaction between DNA phosphate groups and carboxylate anions on the inner carbon surface. Moreover, the total net charge of the DNA adsorbed was found to be equal to the total charge of the carboxylate anions. This selective adsorption into the interior of Ox-CNTTs can be explained from the fact that the electrostatic interaction onto the inner concave surface is much stronger than that on the outer convex surface. On the other hand, the desorption of DNA easily occurs whenever Ca2+ cations are removed by washing with deionized water. Thus, each of Ox-CNTTs works well as a nano-container for a large amount of DNA molecules, thereby resulting in the occurrence of DNA enrichment in the nanospace.


Assuntos
Carbono , Água , Ânions , DNA , Cátions , Adsorção
5.
Chem Commun (Camb) ; 58(50): 7086-7089, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35665789

RESUMO

Microporous polymers with exposed C60 surfaces have been synthesized by a new pathway of crosslinking fullerenol and terephthaloyl chloride or 1,3,5-benzenetricarbonyl trichloride via esterification. The resulting polymers are insoluble solids containing a large ratio of C60 with hydroxy groups and possess micropores with high specific surface area up to 657 m2 g-1. The microporous polymers thus obtained exhibit enhanced hydrogen spillover, which is a unique property of the C60 surface.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35548999

RESUMO

Cryogenic electron microscopy is one of the fastest and most robust methods for capturing high-resolution images of proteins, but stringent sample preparation, imaging conditions, and in situ radiation damage inflicted during data acquisition directly affect the resolution and ability to capture dynamic details, thereby limiting its broader utilization and adoption for protein studies. We addressed these drawbacks by introducing synthesized giant carbon nano-test tubes (GCNTTs) as radiation-insulating materials that lessen the irradiation impact on the protein during data acquisition, physical molecular concentrators that localize the proteins within a nanoscale field of view, and vessels that create a microenvironment for solution-phase imaging. High-resolution electron microscopy images of single and aggregated hemoglobin molecules within GCNTTs in both solid and solution states were acquired. Subsequent scanning transmission electron microscopy, small-angle neutron scattering, and fluorescence studies demonstrated that the GCNTT vessel protected the hemoglobin molecules from electron irradiation-, light-, or heat-induced denaturation. To demonstrate the robustness of GCNTT as an imaging platform that could potentially augment the study of proteins, we demonstrated the robustness of the GCNTT technique to image an alternative protein, d-fructose dehydrogenase, after cyclic voltammetry experiments to review encapsulation and binding insights. Given the simplicity of the material synthesis, sample preparation, and imaging technique, GCNTT is a promising imaging companion for high-resolution, single, and dynamic protein studies under electron microscopy.

7.
Chem Sci ; 13(11): 3140-3146, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35414888

RESUMO

γ-Al2O3 nanoparticles promote pyrolytic carbon deposition of CH4 at temperatures higher than 800 °C to give single-walled nanoporous graphene (NPG) materials without the need for transition metals as reaction centers. To accelerate the development of efficient reactions for NPG synthesis, we have investigated early-stage CH4 activation for NPG formation on γ-Al2O3 nanoparticles via reaction kinetics and surface analysis. The formation of NPG was promoted at oxygen vacancies on (100) surfaces of γ-Al2O3 nanoparticles following surface activation by CH4. The kinetic analysis was well corroborated by a computational study using density functional theory. Surface defects generated as a result of surface activation by CH4 make it kinetically feasible to obtain single-layered NPG, demonstrating the importance of precise control of oxygen vacancies for carbon growth.

8.
ACS Appl Mater Interfaces ; 13(32): 38613-38622, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34370442

RESUMO

Durable nanostructured cathode materials for efficient all-solid-state Li-S batteries were prepared using a conductive single-walled 3D graphene with a large pore volume as the cathode support material. At high loadings of the active material (50-60 wt %), microscale phase segregation was observed with a conventional cathode support material during the charging/discharging processes but this was suppressed by the confinement of insulating sulfur into the mesopores of the elastic and flexible nanoporous graphene with a large pore volume of 5.3 mL g-1. As such, durable three-phase contact was achieved among the solid electrolyte, insulating sulfur, and the electrically conductive carbon. Consequently, the electrochemical performances of the assembled all-solid-state batteries were significantly improved and feasible under the harsh conditions of operation at 353 K, and improved cycling stability as well as the highest specific capacity of 716 mA h per gram of cathode (4.6 mA h cm-2, 0.2 C) was achieved with high sulfur loading (50 wt %).

9.
Nat Commun ; 10(1): 2559, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209212

RESUMO

Nano-confined spaces in nanoporous materials enable anomalous physicochemical phenomena. While most nanoporous materials including metal-organic frameworks are mechanically hard, graphene-based nanoporous materials possess significant elasticity and behave as nanosponges that enable the force-driven liquid-gas phase transition of guest molecules. In this work, we demonstrate force-driven liquid-gas phase transition mediated by nanosponges, which may be suitable in high-efficiency heat management. Compression and free-expansion of the nanosponge afford cooling upon evaporation and heating upon condensation, respectively, which are opposite to the force-driven solid-solid phase transition in shape-memory metals. The present mechanism can be applied to green refrigerants such as H2O and alcohols, and the available latent heat is at least as high as 192 kJ kg-1. Cooling systems using such nanosponges can potentially achieve high coefficients of performance by decreasing the Young's modulus of the nanosponge.

10.
Bioconjug Chem ; 29(9): 2927-2935, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29952551

RESUMO

By using a carbon-coated anodic aluminum oxide (CAAO) film as a monolithic porous electrode for the immobilization of Trametes laccases (LACs), an attempt is made to control the orientation of LAC molecules toward the electrode surface simply by applying an electric potential to the CAAO film. Because the resulting film is characterized by a myriad of open, simple, and straight nanochannels with diameters as large as 40 nm, the O2 diffusion problem in pores is minimized, thereby making it possible to highlight the effect of such orientation on the electrocatalytic activity as a biocathode. It has been evidenced that LAC molecules are favorably oriented for a smooth electron transfer from the electrode when the LACs are immobilized with applying a positive voltage to the electrode, and such favorable orientation exhibits 3.7-times higher electrocatalytic activity than unfavorable orientation. Furthermore, the orientation mechanism has been rationally explained in terms of local surface chemistry on a LAC molecule.


Assuntos
Carbono/química , Eletrodos , Lacase/metabolismo , Propriedades de Superfície , Trametes/enzimologia , Catálise , Enzimas Imobilizadas/química , Nanoestruturas
11.
J Vis Exp ; (135)2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29889195

RESUMO

Monolithic honeycomb structures have been attractive to multidisciplinary fields due to their high strength-to-weight ratio. Particularly, microhoneycomb monoliths (MHMs) with micrometer-scale channels are expected as efficient platforms for reactions and separations because of their large surface areas. Up to now, MHMs have been prepared by a unidirectional freeze-drying (UDF) method only from very limited precursors. Herein, we report a protocol from which a series of MHMs consisting of different components can be obtained. Recently, we found that cellulose nanofibers function as a distinct structure-directing agent towards the formation of MHMs through the UDF process. By mixing the cellulose nanofibers with water soluble substances which do not yield MHMs, a variety of composite MHMs can be prepared. This significantly enriches the chemical constitution of MHMs towards versatile applications.


Assuntos
Celulose/química , Liofilização/métodos , Nanofibras/química
12.
Chem Commun (Camb) ; 54(27): 3327-3330, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29423474

RESUMO

Enhanced hydrogen spillover on molecular fullerene C60, which represents extremely curved graphene sheets, is experimentally demonstrated around ambient temperature. Since the spillover hydrogen is strongly attracted by C60, the increase of C60 mass can be directly confirmed by mass spectroscopy.

13.
Chem Commun (Camb) ; 53(100): 13348-13351, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29192698

RESUMO

Boron and nitrogen co-doped ordered microporous carbons with high surface areas are obtained by using NaY zeolite as a hard template and an ionic liquid, 1-ethyl-3-methylimidazolium tetracyanoborate (EMIT), as a BN source. An acetylene-gas supply during a pyrolysis is effective to avoid the unfavourable reaction of zeolite and EMIT.

14.
Sci Rep ; 7: 42734, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218271

RESUMO

Nowadays, ca. 176,640 tons/year of silicon (Si) (>4N) is manufactured for Si wafers used for semiconductor industry. The production of the highly pure Si wafers inevitably includes very high-temperature steps at 1400-2000 °C, which is energy-consuming and environmentally unfriendly. Inefficiently, ca. 45-55% of such costly Si is lost simply as sawdust in the cutting process. In this work, we develop a cost-effective way to recycle Si sawdust as a high-performance anode material for lithium-ion batteries. By a beads-milling process, nanoflakes with extremely small thickness (15-17 nm) and large diameter (0.2-1 µm) are obtained. The nanoflake framework is transformed into a high-performance porous structure, named wrinkled structure, through a self-organization induced by lithiation/delithiation cycling. Under capacity restriction up to 1200 mAh g-1, the best sample can retain the constant capacity over 800 cycles with a reasonably high coulombic efficiency (98-99.8%).

15.
ACS Appl Mater Interfaces ; 8(44): 30628-30634, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27767296

RESUMO

Ultraviolet (UV) nanoimprint lithography is a promising nanofabrication technology with cost efficiency and high throughput for sub-20 nm size semiconductor, data storage, and optical devices. To test formability of organic resist mask patterns, we investigated whether the type of polymerizable di(meth)acrylate monomer affected the fabrication of cured resin nanopillars by UV nanoimprinting using molds with pores of around 20 nm. We used carbon-coated, porous, anodic aluminum oxide (AAO) films prepared by electrochemical oxidation and thermal chemical vapor deposition as molds, because the pore diameter distribution in the range of 10-40 nm was suitable for combinatorial testing to investigate whether UV-curable resins comprising each monomer were filled into the mold recesses in UV nanoimprinting. Although the UV-curable resins, except for a bisphenol A-based one, detached from the molds without pull-out defects after radical photopolymerization under UV light, the number of cured resin nanopillars was independent of the viscosity of the monomer(s) in each resin. The number of resin nanopillars increased and their diameter decreased as the number of hydroxy groups in the aliphatic diacrylate monomers increased. It was concluded that the filling of the carbon-coated pores having diameters of around 20 nm with UV-curable resins was promoted by the presence of hydroxy groups in the aliphatic di(meth)acrylate monomers.

16.
ACS Nano ; 10(12): 10689-10697, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27809476

RESUMO

Honeycomb structures have been attracting attention from researchers mainly for their high strength-to-weight ratio. As one type of structure, honeycomb monoliths having microscopically dimensioned channels have recently gained many achievements since their emergence. Inspired by the microhoneycomb structure that occurs in natural tree xylems, we have been focusing on the assembly of such a structure by using the major component in tree xylem, cellulose, as the starting material. Through the path that finally led us to the successful reconstruction of tree xylems by the unidirectional freeze-drying (UDF) approach, we verified the function of cellulose nanofibers, toward forming xylem-like monoliths (XMs). The strong tendency of cellulose nanofibers to form XMs through the UDF approach was extensively confirmed with surface grafting or a combination of a variety of second components (or even a third component). The resulting composite XMs were thus imparted with extra properties, which extends the versatility of this kind of material. Particularly, we demonstrated in this paper that XMs containing reduced graphene oxide (denoted as XM/rGO) could be used as strain sensors, taking advantage of their penetrating microchannels and the bulk elasticity property. Our methodology is flexible in its processing and could be utilized to prepare various functional composite XMs.

17.
Langmuir ; 32(46): 11997-12004, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27792878

RESUMO

Micropores play a more important role in enhancing the electrochemical capacitance than mesopores and macropores; therefore, the effect of heteroatom doping into micropores on the electrochemical behavior is interesting. However, heteroatom doping into porous carbon materials would potentially change their pore structures and pore sizes, which also affect their electrochemical capacitive behaviors. To gain insight into the intrinsic effects of heteroatoms on the electrochemical capacitive behaviors, zeolite-templated carbon (ZTC) may be the most suitable candidate. ZTC is an ordered microporous carbon with a uniform micropore size of 1.2 nm, a high surface area, and a large micropore volume. In this work, a series of ZTCs containing oxygen, nitrogen, or boron as heteroatoms, with an ordered pore structure and the same pore size, are prepared. By examining their electrochemical capacitive behaviors in an organic electrolyte, the effect of heteroatom doping can be isolated and discussed without considering the effects of pore structure and pore size. Acid anhydride groups are found to generate pseudocapacitance in two potential ranges, -1.0 to -0.3 V (vs Ag/AgClO4) and -0.2 to 0.4 V. B is introduced into the ZTC framework solely as -B(OH)2, which is found to be an electrochemically inert species. N is introduced as pyridine (3.0%), pyridone/pyrrole (23.8%), quaternary (66.6%), and oxidized N (6.6%), and these species exhibit noticeable pseudocapacitance in the microporous carbon.

18.
Langmuir ; 32(8): 2127-35, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26859703

RESUMO

The main aim of the present work is to precisely understand the sole effect of nitrogen doping on the electrochemical performance of porous carbon materials. To achieve this objective, the whole surface of mesoporous silica (SBA-15) was coated with a thin layer of carbon (about 0.4 nm) with and without N-doping by using acetonitrile and acetylene chemical vapor deposition, respectively. The resulting N-doped and nondoped carbon-coated silica samples have mesopore structures identical to those in the original SBA-15, and they are practically the same in terms of not only the pore size and pore structure but also the particle size distribution and particle morphology, with the exception of N-doping, which makes them unique model materials to extract the sole effect of nitrogen on the performances of electrochemical capacitors and electrocatalytic oxygen reduction. Moreover, the outstanding features of the carbon-coated silica samples allow even a quantitative understanding of the pseudocapacitance induced by nitrogen functionalities on the carbon surface in an acidic aqueous electrolyte.

19.
Sci Rep ; 5: 8085, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25626879

RESUMO

Lithium-ion batteries (LIBs) are generally constructed by lithium-including positive electrode materials, such as LiCoO2, and lithium-free negative electrode materials, such as graphite. Recently, lithium-free positive electrode materials, such as sulfur, are gathering great attention from their very high capacities, thereby significantly increasing the energy density of LIBs. Though the lithium-free materials need to be combined with lithium-containing negative electrode materials, the latter has not been well developed yet. In this work, the feasibility of Li-rich Li-Si alloy is examined as a lithium-containing negative electrode material. Li-rich Li-Si alloy is prepared by the melt-solidification of Li and Si metals with the composition of Li21Si5. By repeating delithiation/lithiation cycles, Li-Si particles turn into porous structure, whereas the original particle size remains unchanged. Since Li-Si is free from severe constriction/expansion upon delithiation/lithiation, it shows much better cyclability than Si. The feasibility of the Li-Si alloy is further examined by constructing a full-cell together with a lithium-free positive electrode. Though Li-Si alloy is too active to be mixed with binder polymers, the coating with carbon-black powder by physical mixing is found to prevent the undesirable reactions of Li-Si alloy with binder polymers, and thus enables the construction of a more practical electrochemical cell.

20.
Phys Chem Chem Phys ; 16(45): 25004-7, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25328126

RESUMO

TiO2 composites with zeolite templated carbon (TiO2-ZTC) and activated carbon (TiO2-AC) were prepared and used as the photocatalysts for comparative studies with pure TiO2. TiO2-ZTC exhibited the highest rate of methylene blue degradation with a rate approximately 4 and 400 times higher than those of TiO2-AC and pure TiO2, respectively. Moreover, the highest catalytic performance of TiO2-ZTC in gas-phase degradation of acetone was approximately 1.1 and 12.9 times higher than TiO2-AC and pure TiO2, respectively. These outstanding performances could be attributed to high surface area, pore volume, and hydrophobic surface properties, leading to improvement in the adsorption properties of organic molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA