Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202400109, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727531

RESUMO

In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S = 2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements al liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2-5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero field splitting parameters of 1 which were previously determined by high- frequency and -field electron paramagnetic resonance and Mössbauer spectroscopies.

2.
Dalton Trans ; 52(7): 2036-2050, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692040

RESUMO

During the last few years, a large number of mononuclear Co(II) complexes of various coordination geometries have been explored as potential single ion magnets (SIMs). In the work presented herein, the Co(II) S = 3/2 tetrahedral [Co{(OPPh2)(EPPh2)N}2], E = S, Se, complexes (abbreviated as CoO2E2), bearing chalcogenated mixed donor-atom imidodiphosphinato ligands, were studied by both experimental and computational techniques. Specifically, direct current (DC) magnetometry provided estimations of their zero-field splitting (zfs) axial (D) and rhombic (E) parameter values, which were more accurately determined by a combination of far-infrared magnetic spectroscopy and high-frequency and -field EPR spectroscopy studies. The latter combination of techniques was also implemented for the S = 3/2 tetrahedral [Co{(EPiPr2)2N}2], E = S, Se, complexes, confirming the previously determined magnitude of their zfs parameters. For both pairs of complexes (E = S, Se), it is concluded that the identity of the E donor atom does not significantly affect their zfs parameters. High-resolution multifrequency EPR studies of CoO2E2 provided evidence of multiple conformations, which are more clearly observed for CoO2Se2, in agreement with the structural disorder previously established for this complex by X-ray crystallography. The CoO2E2 complexes were shown to be field-induced SIMs, i.e., they exhibit slow relaxation of magnetization in the presence of an external DC magnetic field. Advanced quantum-chemical calculations on CoO2E2 provided additional insight into their electronic and structural properties.

3.
RSC Adv ; 12(4): 2227-2236, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35425218

RESUMO

Novel nickel(ii) complexes bearing ( t butyl)bis(diphenylphosphanyl)amine and different halogenido ligands, [Ni(P,P)X2] = [Ni{ t BuN(PPh2)2-κ2P}X2], (X = Cl, Br, I) are prepared, characterized by IR and NMR spectroscopy, mass spectrometry and X-ray crystallography, and tested as catalysts in the Kumada cross-coupling reaction of model substituted iodobenzenes and p-tolylmagnesium bromide. The data obtained together with DFT calculations indicate that these new catalysts operate in the Ni(i)-Ni(iii) mode. The highest catalytic activity and selectivity are exhibited by [Ni(P,P)Cl2], which is most easily reduced by the used Grignard reagent to the Ni(i) state. This process is much more energy demanding in the case of the bromido and iodido complexes, causing the appearance of the induction period. [Ni(P,P)Cl2] is also very active in the cross-couplings of substrates with iodine atoms sterically shielded by ortho substituents. The data obtained are in good accordance with the described positive effect of the increased electron-releasing power of N-substituents R' on the overall catalytic performance of [Ni{R'N(PPh2)2-κ2P}X2] complexes.

4.
Inorg Chem ; 60(15): 10990-11005, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34288665

RESUMO

In this work, we assessed the electronic structures of two pseudotetrahedral complexes of FeII, [Fe{(SPiPr2)2N}2] (1) and [Fe{(SePiPr2)2N}2] (2), using high-frequency and -field EPR (HFEPR) and field-dependent 57Fe Mössbauer spectroscopies. This investigation revealed S = 2 ground states characterized by moderate, negative zero-field splitting (zfs) parameters D. The crystal-field (CF) theory analysis of the spin Hamiltonian (sH) and hyperfine structure parameters revealed that the orbital ground states of 1 and 2 have a predominant dx2-y2 character, which is admixed with dz2 (∼10%). Although replacing the S-containing ligands of 1 by their Se-containing analogues in 2 leads to a smaller |D| value, our theoretical analysis, which relied on extensive ab initio CASSCF calculations, suggests that the ligand spin-orbit coupling (SOC) plays a marginal role in determining the magnetic anisotropy of these compounds. Instead, the dx2-y2ß â†’ dxyß excitations yield a large negative contribution, which dominates the zfs of both 1 and 2, while the different energies of the dx2-y2ß â†’ dxzß transitions are the predominant factor responsible for the difference in zfs between 1 and 2. The electronic structures of these compounds are contrasted with those of other [FeS4] sites, including reduced rubredoxin by considering a D2-type distortion of the [Fe(E-X)4] cores, where E = S, Se; X = C, P. Our combined CASSCF/DFT calculations indicate that while the character of the orbital ground state and the quintet excited states' contribution to the zfs of 1 and 2 are modulated by the magnitude of the D2 distortion, this structural change does not impact the contribution of the excited triplet states.

5.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579044

RESUMO

The cobalt-seleno-based coordination complex, [Co{(SePiPr2)2N}2], is reported with respect to its catalytic activity in oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solutions. An overpotential of 320 and 630 mV was required to achieve 10 mA cm-2 for OER and HER, respectively. The overpotential for OER of this CoSe4-containing complex is one of the lowest that has been observed until now for molecular cobalt(II) systems, under the reported conditions. In addition, this cobalt-seleno-based complex exhibits a high mass activity (14.15 A g-1) and a much higher turn-over frequency (TOF) value (0.032 s-1) at an overpotential of 300 mV. These observations confirm analogous ones already reported in the literature pertaining to the potential of molecular cobalt-seleno systems as efficient OER electrocatalysts.


Assuntos
Cobalto/química , Eletroquímica , Selênio/química , Água/química , Catálise , Modelos Moleculares
6.
Inorg Chem ; 59(18): 13281-13294, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32897702

RESUMO

The high-spin S = 2 Mn(III) complex [Mn{(OPPh2)2N}3] (1Mn) exhibits field-induced slow relaxation of magnetization (Inorg. Chem. 2013, 52, 12869). Magnetic susceptibility and dual-mode X-band electron paramagnetic resonance (EPR) studies revealed a negative value of the zero-field-splitting (zfs) parameter D. In order to explore the magnetic and electronic properties of 1Mn in detail, a combination of experimental and computational studies is presented herein. Alternating-current magnetometry on magnetically diluted samples (1Mn/1Ga) of 1Mn in the diamagnetic gallium analogue, [Ga{(OPPh2)2N}3], indicates that the slow relaxation behavior of 1Mn is due to the intrinsic properties of the individual molecules of 1Mn. Investigation of the single-crystal magnetization of both 1Mn and 1Mn/1Ga by a micro-SQUID device reveals hysteresis loops below 1 K. Closed hysteresis loops at a zero direct-current magnetic field are observed and attributed to fast quantum tunneling of magnetization. High-frequency and -field EPR (HFEPR) spectroscopic studies reveal that, apart from the second-order zfs terms (D and E), fourth-order terms (B4m) are required in order to appropriately describe the magnetic properties of 1Mn. These studies provide accurate spin-Hamiltonian (sH) parameters of 1Mn, i.e., zfs parameters |D| = 3.917(5) cm-1, |E| = 0.018(4) cm-1, B04 = B42 = 0, and B44 = (3.6 ± 1.7) × 10-3 cm-1 and g = [1.994(5), 1.996(4), 1.985(4)], and confirm the negative sign of D. Parallel-mode X-band EPR studies on 1Mn/1Ga and CH2Cl2 solutions of 1Mn probe the electronic-nuclear hyperfine interactions in the solid state and solution. The electronic structure of 1Mn is investigated by quantum-chemical calculations by employing recently developed computational protocols that are grounded on ab initio wave function theory. From computational analysis, the contributions of spin-spin and spin-orbit coupling to the magnitude of D are obtained. The calculations provide also computed values of the fourth-order zfs terms B4m, as well as those of the g and hyperfine interaction tensor components. In all cases, a very good agreement between the computed and experimentally determined sH parameters is observed. The magnetization relaxation properties of 1Mn are rationalized on the basis of the composition of the ground-state wave functions in the absence or presence of an external magnetic field.

7.
Inorg Chem ; 59(6): 3666-3676, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32077279

RESUMO

Strain effects on g and metal hyperfine coupling tensors, A, are often manifested in Electron Paramagnetic Resonance (EPR) spectra of transition metal complexes, as a result of their intrinsic and/or solvent-mediated structural variations. Although distributions of these tensors are quite common and well understood in continuous-wave (cw) EPR spectroscopy, reported strain effects on ligand hyperfine coupling constants are rather scarce. Here we explore the case of a conformationally flexible Cu(II) complex, [Cu{Ph2P(O)NP(O)Ph2-κ2O,O'}2], bearing P atoms in its second coordination sphere and exhibiting two structurally distinct CuO4 coordination spheres, namely a square planar and a tetrahedrally distorted one, as revealed by X-ray crystallography. The Hyperfine Sublevel Correlation (HYSCORE) spectra of this complex exhibit 31P correlation ridges that have unusual inverse or so-called "boomerang" shapes and features that cannot be reproduced by standard simulation procedures assuming only one set of magnetic parameters. Our work shows that a distribution of isotropic hyperfine coupling constants (hfc) spanning a range between negative and positive values is necessary in order to describe in detail the unusual shapes of HYSCORE spectra. By employing DFT calculations we show that these hfc correspond to molecules showing variable distortions from square planar to tetrahedral geometry, and we demonstrate that line shape analysis of such HYSCORE spectra provides new insight into the conformation-dependent spectroscopic response of the spin system under investigation.

8.
ChemSusChem ; 9(22): 3128-3132, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27619260

RESUMO

We report the highly efficient catalytic activity of a transition metal selenide-based coordination complex, [Ni{(SePi Pr2 )2 N}2 ], (1) for oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solution. Very low overpotentials of 200 mV and 310 mV were required to achieve 10 mA cm-2 for OER and HER, respectively. The overpotential for OER is one of the lowest that has been reported up to now, making this one of the best OER electrocatalysts. In addition, this molecular complex exhibits an exceptionally high mass activity (111.02 A g-1 ) and a much higher TOF value (0.26 s-1 ) at a overpotential of 300 mV. This bifunctional electrocatalyst enables water electrolysis in alkaline solutions at a cell voltage of 1.54 V.


Assuntos
Níquel/química , Compostos Organometálicos/química , Selênio/química , Água/química , Eletroquímica , Hidrogênio/química , Modelos Moleculares , Conformação Molecular , Oxirredução
9.
Inorg Chem ; 55(19): 9537-9548, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27636564

RESUMO

This study reports the static and dynamic magnetic characterization of two mononuclear tetrahedral CoII complexes, [Co{iPr2P(E)NP(E)iPr2}2], where E = S (CoS4) and Se (CoSe4), which behave as single-ion magnets (SIMs). Low-temperature (15 K) single-crystal X-ray diffraction studies point out that the two complexes exhibit similar structural features in their first coordination sphere, but a disordered peripheral iPr group is observed only in CoS4. Although the latter complex crystallizes in an axial space group, the observed structural disorder leads to larger transverse magnetic anisotropy for the majority of the molecules compared to CoSe4, as confirmed by electron paramagnetic resonance spectroscopy. Static magnetic characterization indicates that both CoS4 and CoSe4 show easy-axis anisotropy, with comparable D values (∼-30 cm-1). Moreover, alternating-current susceptibility measurements on these CoII complexes, magnetically diluted in their isostructural ZnII analogues, highlight the role of dipolar magnetic coupling in the mechanism of magnetization reversal. In addition, our findings suggest that, despite their similar anisotropic features, CoS4 and CoSe4 relax magnetically via different processes. This work provides experimental evidence that solid-state effects may affect the magnetic behavior of SIMs.

10.
J Am Chem Soc ; 137(40): 12923-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352187

RESUMO

The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.

11.
Inorg Chem ; 52(22): 12869-71, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24191754

RESUMO

The magnetic properties of the mononuclear manganese(III) complex [Mn{(OPPh2)2N}3] are investigated by means of magnetometry and dual-mode X-band electron paramagnetic resonance spectroscopy. Slow relaxation of magnetization is induced in the presence of external magnetic fields.

12.
J Magn Reson ; 224: 94-100, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23064483

RESUMO

We report continuous-wave electron-paramagnetic-resonance (EPR) spectra of the high-spin Fe(II) complex Fe[(SPPh(2))(2)N](2) at 275.7 GHz, 94.1 GHz and 9.5 GHz. Combined analysis of these EPR spectra shows that the complex occurs in multiple conformations. For two main conformations the spin-Hamiltonian parameters, which reflect the electronic structure of the complex, are accurately determined: (1) D=9.17 cm(-1) (275 GHz), E/D=0.021 and (2) D=8.87 cm(-1) (266 GHz), E/D=0.052. The EPR spectra obtained at 275.7 GHz on single crystals of the complex are essential for the analysis and in addition they reveal that the two main conformations occur at two magnetically distinguishable sites.


Assuntos
Algoritmos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ferro/química
13.
Inorg Chem ; 51(13): 7218-31, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22697407

RESUMO

In this work, magnetometry and high-frequency and -field electron paramagnetic resonance spectroscopy (HFEPR) have been employed in order to determine the spin Hamiltonian (SH) parameters of the non-Kramers, S = 1, pseudooctahedral trans-[Ni(II){(OPPh(2))(EPPh(2))N}(2)(sol)(2)] (E = S, Se; sol = DMF, THF) complexes. X-ray crystallographic studies on these compounds revealed a highly anisotropic NiO(4)E(2) coordination environment, as well as subtle structural differences, owing to the nature of the Ni(II)-coordinated solvent molecule or ligand E atoms. The effects of these structural characteristics on the magnetic properties of the complexes were investigated. The accurately HFEPR-determined SH zero-field-splitting (zfs) D and E parameters, along with the structural data, provided the basis for a systematic density functional theory (DFT) and multiconfigurational ab initio computational analysis, aimed at further elucidating the electronic structure of the complexes. DFT methods yielded only qualitatively useful data. However, already entry level ab initio methods yielded good results for the investigated magnetic properties, provided that the property calculations are taken beyond a second-order treatment of the spin-orbit coupling (SOC) interaction. This was achieved by quasi-degenerate perturbation theory, in conjunction with state-averaged complete active space self-consistent-field calculations. The accuracy in the calculated D parameters improves upon recovering dynamic correlation with multiconfigurational ab initio methods, such as the second-order N-electron valence perturbation theory NEVPT2, the difference dedicated configuration interaction, and the spectroscopy-oriented configuration interaction. The calculations showed that the magnitude of D (∼3-7 cm(-1)) in these complexes is mainly dominated by multiple SOC contributions, the origin of which was analyzed in detail. In addition, the observed largely rhombic regime (E/D = 0.16-0.33) is attributed to the highly distorted metal coordination sphere. Of special importance is the insight by this work on the zfs effects of Se coordination to Ni(II). Overall, a combined experimental and theoretical methodology is provided, as a means to probe the electronic structure of octahedral Ni(II) complexes.


Assuntos
Complexos de Coordenação/química , Magnetismo , Níquel/química , Teoria Quântica , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Magnetometria , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
14.
Inorg Chem ; 50(18): 8741-54, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21848258

RESUMO

A systematic Density Functional Theory (DFT) and multiconfigurational ab initio computational analysis of the Spin Hamiltonian (SH) parameters of tetracoordinate S = 3/2 Co((II))S(4)-containing complexes has been performed. The complexes under study bear either arylthiolato, ArS(-), or dithioimidodiphosphinato, [R(2)P(S)NP(S)R'(2)](-) ligands. These complexes were chosen because accurate structural and spectroscopic data are available, including extensive Electron Paramagnetic Resonance (EPR)/Electron Nuclear Double Resonance (ENDOR) studies. For comparison purposes, the [Co(PPh(3))(2)Cl(2)] complex, which was thoroughly studied in the past by High-Field and Frequency EPR and Variable Temperature, Variable Field Magnetic Circular Dichroism (MCD) spectroscopies, was included in the studied set. The magnitude of the computed axial zero-field splitting parameter D (ZFS), of the Co((II))S(4) systems, was found to be within ~10% of the experimental values, provided that the property calculation is taken beyond the accuracy obtained with a second-order treatment of the spin-orbit coupling interaction. This is achieved by quasi degenerate perturbation theory (QDPT), in conjunction with complete active space configuration interaction (CAS-CI). The accuracy was increased upon recovering dynamic correlation with multiconfigurational ab initio methods. Specifically, spectroscopy oriented configuration interaction (SORCI), and difference dedicated configuration interaction (DDCI) were employed for the calculation of the D-tensor. The sign and magnitude of parameter D was analyzed in the framework of Ligand Field Theory, to reveal the differences in the electronic structures of the investigated Co((II))S(4) systems. For the axial complexes, accurate effective g'-tensors were obtained in the QDPT studies. These provide a diagnostic tool for the adopted ground state configuration (±3/2 or ±1/2) and are hence indicative of the sign of D. On the other hand, for the rhombic complexes, the determination of the sign of D required the SH parameters to be derived along suitably constructed symmetry interconversion pathways. This procedure, which introduces a dynamic perspective into the theoretical investigation, helped to shed some light on unresolved issues of the corresponding experimental studies. The metal hyperfine and ligand super-hyperfine A-tensors of the C(2) [Co{(SPPh(2))(SP(i)Pr(2))N}(2)] complex were estimated by DFT calculations. The theoretical data were shown to be in good agreement with the available experimental data. Decomposition of the metal A-tensor into individual contributions revealed that, despite the large ZFS, the observed significant anisotropy should be largely attributed to spin-dipolar contributions. The analysis of both, metal and ligand A-tensors, is consistent with a highly covalent character of the Co-S bonds.


Assuntos
Complexos de Coordenação/química , Cobre/química , Compostos de Sulfidrila/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Teoria Quântica
15.
Dalton Trans ; 40(1): 169-80, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21076739

RESUMO

The synthesis of the M[(OPPh(2))(SePPh(2))N](2), M = Co (1), Ni (2) complexes was accomplished by metathetical reactions between the corresponding M(II) salts and the deprotonated form of the dichalcogenated imidodiphosphinato ligand [(OPPh(2))(SePPh(2))N](-). X-Ray crystallography revealed a pseudo-tetrahedral MO(2)Se(2) coordination sphere, owing to the asymmetric (O,Se) nature of the chelating ligand. Slow diffusion of the coordinating solvent dimethylformamide into dichloromethane solutions of Ni[(OPPh(2))(SPPh(2))N](2) or 2, afforded the pseudo-octahedral trans-[Ni{(OPPh(2))(EPPh(2))N}(2)(dmf)(2)], E = S (3), Se (4) complexes, respectively. UV-vis spectra provided evidence that, in solution, complexes 3 and 4 revert to the corresponding pseudo-tetrahedral complexes, most likely due to the removal of the dmf molecules from the coordination sphere. The IR spectra of all complexes reflect the structural features observed by X-ray crystallography. The magnetic properties of the S = 3/2 complex 1, as well as the S = 1 complexes 2, 3 and 4, were extensively studied, and the magnitude of their g and zero-field splitting D parameters was estimated. The reported structures establish a structural transformation of tetrahedral to octahedral geometry of Ni(II) complexes bearing asymmetric imidodiphosphinate ligands, upon recrystallization from coordinating solvents. The structural correlations between the Ni(II) coordination spheres are aided by DFT and ab initio multi-configuration MCSCF calculations, which investigate the corresponding interconversion pathways. In addition, the calculations provide descriptions of the bonding interactions in the octahedral Ni(II) complexes, as well as predictions of their D values.

16.
BMC Microbiol ; 10: 271, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21029451

RESUMO

BACKGROUND: Ferredoxins are small iron-sulfur proteins belonging to all domains of life. A sub-group binds two [4Fe-4S] clusters with unequal and extremely low values of the reduction potentials. These unusual properties are associated with two specific fragments of sequence. The functional importance of the very low potential ferredoxins is unknown. RESULTS: A bioinformatic screening of the sequence features defining very low potential 2[4Fe-4S] ferredoxins has revealed the almost exclusive presence of the corresponding fdx gene in the Proteobacteria phylum, without occurrence in Archaea and Eukaryota. The transcript was found to be monocistronic in Pseudomonas aeruginosa, and not part of an operon in most bacteria. Only fdx genes of bacteria which anaerobically degrade aromatic compounds belong to operons. As this pathway is not present in all bacteria having very low potential 2[4Fe-4S] ferredoxins, these proteins cannot exclusively be reductants of benzoyl CoA reductases. Expression of the ferredoxin gene did not change in response to varying growth conditions, including upon macrophage infection or aerobic growth with 4-hydroxy benzoate as carbon source. However, it increased along the growth curve in Pseudomonas aeruginosa and in Escherichia coli. The sequence immediately 5' upstream of the coding sequence contributed to the promotor activity. Deleting the fdx gene in Pseudomonas aeruginosa abolished growth, unless a plasmid copy of the gene was provided to the deleted strain. CONCLUSIONS: The gene of the very low potential 2[4Fe-4S] ferredoxin displays characteristics of a housekeeping gene, and it belongs to the minority of genes that are essential in Pseudomonas aeruginosa. These data identify a new potential antimicrobial target in this and other pathogenic Proteobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Ferredoxinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Animais , Bactérias/química , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular , Humanos , Camundongos , Dados de Sequência Molecular , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Alinhamento de Sequência
17.
Artigo em Inglês | MEDLINE | ID: mdl-20689709

RESUMO

Metal complexes bearing dichalcogenated imidodiphosphinate [R(2)P(E)NP(E)R(2)'](-) ligands (E = O, S, Se, Te), which act as (E,E) chelates, exhibit a remarkable variety of three-dimensional structures. A series of such complexes, namely, square-planar [Cu{(OPPh(2))(OPPh(2))N-O, O}(2)], tetrahedral [Zn{(EPPh(2))(EPPh(2))N-E,E}(2)], E = O, S, and octahedral [Ga{(OPPh(2))(OPPh(2))N-O,O}(3)], were tested as potential inhibitors of either the platelet activating factor (PAF)- or thrombin-induced aggregation in both washed rabbit platelets and rabbit platelet rich plasma. For comparison, square-planar [Ni{(Ph(2)P)(2)N-S-CHMePh-P, P}X(2)], X = Cl, Br, the corresponding metal salts of all complexes and the (OPPh(2))(OPPh(2))NH ligand were also investigated. Ga(O,O)(3) showed the highest anti-PAF activity but did not inhibit the thrombin-related pathway, whereas Zn(S,S)(2), with also a significant PAF inhibitory effect, exhibited the highest thrombin-related inhibition. Zn(O,O)(2) and Cu(O,O)(2) inhibited moderately both PAF and thrombin, being more effective towards PAF. This work shows that the PAF-inhibitory action depends on the structure of the complexes studied, with the bulkier Ga(O,O)(3) being the most efficient and selective inhibitor.

18.
Inorg Chem ; 49(11): 5079-93, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20462270

RESUMO

Sulfur-containing mono- or bidentate types of ligands, usually form square planar Ni((II))S(4) complexes. However, it has already been established that the bidentate L(-) dithioimidodiphosphinato ligands, [R(2)P(S)NP(S)R'(2)](-), R, and R' = aryl or alkyl, can afford both tetrahedral and square planar, NiS(4)-containing, homoleptic Ni(R,R')L(2) complexes, owing to an apparent structural flexibility, which has not, so far, been probed. In this work, the literature tetrahedral Ni[R(2)P(S)NP(S)R(2)](2) complexes, R = Ph (Ni(Ph,Ph)L(2), 1(Td)) and R = (i)Pr (Ni(iPr,iPr)L(2), 2) as well as the newly synthesized Ni[(i)Pr(2)P(S)NP(S)Ph(2)](2) complex (Ni(iPr,Ph)L(2), 3), have been studied by UV-vis, IR, and (31)P NMR spectroscopy. Complex 3 was shown by X-ray crystallography to be square planar, and magnetic studies confirmed that it is diamagnetic in the solid state. However, it becomes paramagnetic in solution, as it shows a similar UV-vis spectrum to one of the tetrahedral 1(Td) and 2 complexes. The crystal structure of the potassium salt of the asymmetric ligand, [(i)Pr(2)P(S)NP(S)Ph(2)]K, has also been determined and compared to those of the protonated (i)Pr(2)P(S)NHP(S)Ph(2) ligand and complex 3. All three, 1(Td), 2, and 3, Ni(R,R')L(2) complexes show strong paramagnetic effects in their solution (31)P NMR spectra. The magnetic properties of paramagnetic complexes 1 and 2 in the solid state were investigated on oriented crystals, and their analysis afforded remarkably small values of the spin-orbit coupling constant (lambda) and orbital reduction factor (k) parameters, implying significant delocalization of unpaired electronic density toward the ligands. The above experimental findings are combined with data from standard density functional theory and correlated multiconfiguration ab initio theoretical methods, in an effort to investigate the interplay between the square planar and tetrahedral geometries of the NiS(4) core, the mechanistic pathway for the spin-state interconversion, the degree of covalency of the Ni-S bonds, and the distribution of the spin density in this type of system. The analysis provides justification for the structural flexibility of such ligands, affording Ni(R,R')L(2) complexes with variable metallacycle conformation and NiS(4) core geometries. Of particular importance are the large zero-field splitting values estimated by both experimental and theoretical means, which have not, as yet, been verified by direct methods, such as electron paramagnetic resonance spectroscopy. The findings of our work confirm earlier observations on the feasibility of synthesizing either tetrahedral or square planar NiS(4) complexes containing the same type of ligands. They can also form the basis of investigating structure-properties relationships in other NiS(4)-containing systems.


Assuntos
Simulação por Computador , Níquel/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Teoria Quântica , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular
19.
Inorg Chem ; 49(2): 595-605, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20025235

RESUMO

Advanced electron paramagnetic resonance (EPR) methods have been employed in the study of two high-spin cobalt(II) complexes, Co[(SPPh(2))(2)N](2) (Co(Ph,Ph)L(2)) and Co[(SPPh(2))(SP(i)Pr(2))N](2) (Co(iPr,Ph)L(2)), in which the bidentate disulfidoimidodiphosphinato ligands make up for a pseudotetrahedral sulfur coordination of the transition metal. The CoS(4) core in the two complexes has slightly different structure, owing to the different peripheral groups (phenyl or isopropyl) bound to the phosphorus atoms. To determine the zero-field splitting, notoriously difficult for high-spin cobalt(II), the two complexes required different approaches. For Co(Ph,Ph)L(2), the study of the X-band EPR spectrum of a single crystal as a function of temperature revealed a nearly axial character of the zero-field splitting (ZFS; E/D approximately -0.05). For Co(iPr,Ph)L(2), the combination of the EPR spectra at 9, 95, and 275 GHz revealed a rhombic character of the ZFS (E/D approximately -0.33). The energy difference between the Kramers doublets in Co(Ph,Ph)L(2) and Co(iPr,Ph)L(2) amounts to 24 cm(-1) and 30 cm(-1), respectively. From the X-band EPR spectra of diamagnetically diluted single crystals at fields up to 2.5 T for Co(Ph,Ph)L(2) and 0.5 T for Co(iPr,Ph)L(2), the effective g tensors and cobalt hyperfine tensors have been determined, including the direction of the principal axes in the cobalt sites. The values of the EPR observables are discussed in relation to the structural characteristics of the first (CoS(4)) and second coordination sphere in the complexes.


Assuntos
Cobalto/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Enxofre/química , Modelos Moleculares
20.
Phys Chem Chem Phys ; 11(31): 6727-32, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19639146

RESUMO

Spin-echo detection at 95 GHz enables an electron-paramagnetic-resonance study of a cobalt complex with a bio-mimetic coordination of the transition metal by four sulfur atoms. A magnetically diluted single crystal of the complex has been investigated in great detail. Electron-nuclear double-resonance signals were observed of ligand nuclei and complete hyperfine tensors of the distinct phosphorus nuclei were derived, assigned and discussed.


Assuntos
Cobalto/química , Compostos Organometálicos/química , Enxofre/química , Espectroscopia de Ressonância de Spin Eletrônica , Fósforo/análise , Fósforo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...