Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(4): eadl2818, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277457

RESUMO

For some intermetallic compounds containing lanthanides, structural transitions can result in intermediate electronic states between trivalency and tetravalency; however, this is rarely observed for praseodymium compounds. The dominant trivalency of praseodymium limits potential discoveries of emergent quantum states in itinerant 4f1 systems accessible using Pr4+-based compounds. Here, we use in situ powder x-ray diffraction and in situ electron energy-loss spectroscopy (EELS) to identify an intermetallic example of a dominantly Pr4+ state in the polymorphic system Pr2Co3Ge5. The structure-valence transition from a nearly full Pr4+ electronic state to a typical Pr3+ state shows the potential of Pr-based intermetallic compounds to host valence-unstable states and provides an opportunity to discover previously unknown quantum phenomena. In addition, this work emphasizes the need for complementary techniques like EELS when evaluating the magnetic and electronic properties of Pr intermetallic systems to reveal details easily overlooked when relying on bulk magnetic measurements alone.

2.
ACS Omega ; 7(23): 19048-19057, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721977

RESUMO

The recent discovery of the A n+1B n X3n+1 (A = lanthanide, B = transition metal, X = tetrel) homologous series provides a new platform to study the structure-property relationships of highly correlated electron systems. Several members of Ce n+1Co n Ge3n+1 (n = 1, 4, 5, 6, and ∞) show evidence of heavy electron behavior with complex magnetic interactions. While the Ce analogues have been investigated, only n = 1, 2, and ∞ of Pr n+1Co n Ge3n+1 have been synthesized, with n = 1 and 2 showing a nonsinglet magnetic ground state. The Pr analogues can provide a platform for direct comparison of highly correlated behavior. In this perspective, we discuss the impetus for synthesizing the Pr n+1Co n Ge3n+1 members and present the structural characterization of the n = 3 and n = 4 members. We lay the foundation for future investigations of the Pr n+1Co n Ge3n+1 family of compounds and highlight the importance of complementary methods to characterize new quantum materials.

3.
Inorg Chem ; 60(20): 15343-15350, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34609873

RESUMO

The BaAl4 prototype structure and its derivatives have been identified to host several topological quantum materials and noncentrosymmetric superconductors. Single crystals up to ∼3 mm × 3 mm × 5 mm of Ln2Co3Ge5 (Ln = Pr, Nd, and Sm) are obtained via flux growth utilizing Sn as metallic flux. The crystal structure is isostructural to the Lu2Co3Si5 structure type in the crystallographic space group C2/c. The temperature-dependent magnetization indicates magnetic ordering at 30 K for all three compounds. Pr2Co3Ge5 and Nd2Co3Ge5 exhibit complex magnetic behavior with spin reorientations before ordering antiferromagnetically around 6 K, whereas Sm2Co3Ge5 shows a clear antiferromagnetic behavior at 26 K. The structures and properties of Ln2Co3Ge5 (Ln = Pr, Nd, and Sm) are compared to those of the ThCr2Si2 and BaNiSn3 structure types. Herein, we present the optimized crystal growth, structure, and physical properties of Ln2Co3Ge5 (Ln = Pr, Nd, and Sm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...