Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Ther ; 190: 202-236, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29842917

RESUMO

Cathepsin C (CatC) is a highly conserved tetrameric lysosomal cysteine dipeptidyl aminopeptidase. The best characterized physiological function of CatC is the activation of pro-inflammatory granule-associated serine proteases. These proteases are synthesized as inactive zymogens containing an N-terminal pro-dipeptide, which maintains the zymogen in its inactive conformation and prevents premature activation, which is potentially toxic to the cell. The activation of serine protease zymogens occurs through cleavage of the N-terminal dipeptide by CatC during cell maturation in the bone marrow. In vivo data suggest that pharmacological inhibition of pro-inflammatory serine proteases would suppress or attenuate deleterious effects mediated by these proteases in inflammatory/auto-immune disorders. The pathological deficiency in CatC is associated with Papillon-Lefèvre syndrome (PLS). The patients however do not present marked immunodeficiency despite the absence of active serine proteases in immune defense cells. Hence, the transitory pharmacological blockade of CatC activity in the precursor cells of the bone marrow may represent an attractive therapeutic strategy to regulate activity of serine proteases in inflammatory and immunologic conditions. A variety of CatC inhibitors have been developed both by pharmaceutical companies and academic investigators, some of which are currently being employed and evaluated in preclinical/clinical trials.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Catepsina C/antagonistas & inibidores , Inflamação/tratamento farmacológico , Animais , Doenças Autoimunes/fisiopatologia , Catepsina C/metabolismo , Desenvolvimento de Medicamentos/métodos , Humanos , Inflamação/fisiopatologia , Doença de Papillon-Lefevre/tratamento farmacológico , Doença de Papillon-Lefevre/fisiopatologia , Serina Proteases/metabolismo
2.
J Med Chem ; 61(5): 1858-1870, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29442501

RESUMO

The neutrophilic serine protease proteinase 3 (PR3) is involved in inflammation and immune response and thus appears as a therapeutic target for a variety of infectious and inflammatory diseases. Here we combined kinetic and molecular docking studies to increase the potency of peptidyl-diphenyl phosphonate PR3 inhibitors. Occupancy of the S1 subsite of PR3 by a nVal residue and of the S4-S5 subsites by a biotinylated Val residue as obtained in biotin-VYDnVP(O-C6H4-4-Cl)2 enhanced the second-order inhibition constant kobs/[I] toward PR3 by more than 10 times ( kobs/[I] = 73000 ± 5000 M-1 s-1) as compared to the best phosphonate PR3 inhibitor previously reported. This inhibitor shows no significant inhibitory activity toward human neutrophil elastase and resists proteolytic degradation in sputa from cystic fibrosis patients. It also inhibits macaque PR3 but not the PR3 from rodents and can thus be used for in vivo assays in a primate model of inflammation.


Assuntos
Mieloblastina/química , Organofosfonatos/antagonistas & inibidores , Animais , Sítios de Ligação , Humanos , Inflamação , Cinética , Macaca , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Roedores , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...