Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(24): 244504, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36586975

RESUMO

We investigate the structural relaxation of a soft-sphere liquid quenched isochorically (ϕ = 0.7) and instantaneously to different temperatures Tf above and below the glass transition. For this, we combine extensive Brownian dynamics simulations and theoretical calculations based on the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory. The response of the liquid to a quench generally consists of a sub-linear increase of the α-relaxation time with system's age. Approaching the ideal glass-transition temperature from above (Tf > Ta), sub-aging appears as a transient process describing a broad equilibration crossover for quenches to nearly arrested states. This allows us to empirically determine an equilibration timescale teq(Tf) that becomes increasingly longer as Tf approaches Ta. For quenches inside the glass (Tf ≤ Ta), the growth rate of the structural relaxation time becomes progressively larger as Tf decreases and, unlike the equilibration scenario, τα remains evolving within the whole observation time-window. These features are consistently found in theory and simulations with remarkable semi-quantitative agreement and coincide with those revealed in a previous and complementary study [P. Mendoza-Méndez et al., Phys. Rev. 96, 022608 (2017)] that considered a sequence of quenches with fixed final temperature Tf = 0 but increasing ϕ toward the hard-sphere dynamical arrest volume fraction ϕHS a=0.582. The NE-SCGLE analysis, however, unveils various fundamental aspects of the glass transition, involving the abrupt passage from the ordinary equilibration scenario to the persistent aging effects that are characteristic of glass-forming liquids. The theory also explains that, within the time window of any experimental observation, this can only be observed as a continuous crossover.


Assuntos
Vidro , Simulação de Dinâmica Molecular , Temperatura , Temperatura de Transição , Vidro/química
2.
J Chem Phys ; 148(10): 104505, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29544304

RESUMO

Upon compression, the equilibrium hard-sphere liquid [pair potential uHS(r)] freezes at a packing fraction ϕf = 0.494 or, if crystallization is prevented, becomes metastable up to its glass transition at ϕg ≈ 0.58. Throughout the fluid regime (ϕ < ϕg), we are, thus, certain that this model liquid does not exhibit any form of kinetic arrest. If, however, a small portion of these spheres (packing fraction ϕ2 ≪ ϕ) happen to ignore each other [u22(r) = 0] but do not ignore the remaining "normal" hard spheres [u12(r) = u21(r) = u11(r) = uHS(r)], whose packing fraction is thus ϕ1 = ϕ - ϕ2, they run the risk of becoming dynamically arrested before they demix from the "normal" particles. This unexpected and counterintuitive scenario was first theoretically predicted and then confirmed by simulations.

3.
Phys Rev E ; 96(2-1): 022608, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950613

RESUMO

Understanding glasses and the glass transition requires comprehending the nature of the crossover from the ergodic (or equilibrium) regime, in which the stationary properties of the system have no history dependence, to the mysterious glass transition region, where the measured properties are nonstationary and depend on the protocol of preparation. In this work we use nonequilibrium molecular dynamics simulations to test the main features of the crossover predicted by the molecular version of the recently developed multicomponent nonequilibrium self-consistent generalized Langevin equation theory. According to this theory, the glass transition involves the abrupt passage from the ordinary pattern of full equilibration to the aging scenario characteristic of glass-forming liquids. The same theory explains that this abrupt transition will always be observed as a blurred crossover due to the unavoidable finiteness of the time window of any experimental observation. We find that within their finite waiting-time window, the simulations confirm the general trends predicted by the theory.

4.
Soft Matter ; 11(4): 655-8, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25513994

RESUMO

In this work we report experimental and theoretical results for the motion of single colloidal particles embedded in complex fluids with different interparticle interactions. The motion of particles is found to follow a similar behavior for the different systems. In particular, the transition from the short-time diffusive motion to the subdiffusive intermediate-time motion is found to occur when the square root of its mean squared displacement is in the order of 1 tenth of the neighbors' interparticle distance, thus following a quantitative criterion similar to Lindemann's criterion for melting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...