Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 15: 792652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173582

RESUMO

Rapid removal of glutamate from the sites of glutamate release is an essential step in excitatory synaptic transmission. However, despite many years of research, the molecular mechanisms underlying the intracellular regulation of glutamate transport at tripartite synapses have not been fully uncovered. This limits the options for pharmacological treatment of glutamate-related motor disorders, including Huntington's disease (HD). We therefore investigated the possible binding partners of transgenic EAAT2 and their alterations under the influence of mutant huntingtin (mHTT). Mass spectrometry analysis after pull-down of striatal YFP-EAAT2 from wild-type (WT) mice and heterozygote (HET) Q175 mHTT-knock-in mice identified a total of 148 significant (FDR < 0.05) binders to full-length EAAT2. Of them 58 proteins exhibited mHTT-related differences. Most important, in 26 of the 58 mHTT-sensitive cases, protein abundance changed back toward WT levels when the mice expressed a C-terminal-truncated instead of full-length variant of EAAT2. These findings motivated new attempts to clarify the role of astrocytic EAAT2 regulation in cortico-basal movement control. Striatal astrocytes of Q175 HET mice were targeted by a PHP.B vector encoding EAAT2 with different degree of C-terminal modification, i.e., EAAT2-S506X (truncation at S506), EAAT2-4KR (4 lysine to arginine substitutions) or EAAT2 (full-length). The results were compared to HET and WT injected with a tag-only vector (CTRL). It was found that the presence of a C-terminal-modified EAAT2 transgene (i) increased the level of native EAAT2 protein in striatal lysates and perisynaptic astrocyte processes, (ii) enhanced the glutamate uptake of transduced astrocytes, (iii) stimulated glutamate clearance at individual corticostriatal synapses, (iv) increased the glutamate uptake of striatal astrocytes and (iv) alleviated the mHTT-related hypokinesia (open field indicators of movement initiation). In contrast, over-expression of full-length EAAT2 neither facilitated glutamate uptake nor locomotion. Together, our results support the new hypothesis that preventing abnormal protein-protein interactions at the C-terminal of EAAT2 could eliminate the mHTT-related deficits in corticostriatal synaptic glutamate clearance and movement initiation.

2.
Oncotarget ; 9(45): 27760-27772, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963235

RESUMO

INTRODUCTION: Clinical application of antiangiogenic therapy lacks direct visualization of therapy efficacy and vascular resistance. We aimed to establish molecular imaging during treatment with sunitinib using the fibronectin extradomain A specific small immunoprotein(SIP)-F8 in glioma. METHODS: Biodistribution analysis of F8-SIP-Alexa-555 was performed in SF126-glioma bearing or control mice (n = 23 and 7, respectively). Intravital microscopy(IVM) was performed on a microvascular level after 7 days (n = 5 per group) and subsequently after 6 days of sunitinib treatment (n = 4) or without (n = 2).Additionally, near infrared fluorescence(NIRF) imaging was established with F8-SIP-Alexa-750 allowing non-invasive imaging with and without antiangiogenic treatment in orthotopic tumors (n = 38 divided in 4 groups). MRI was used to determine tumor size and served as a reference for NIRF imaging. RESULTS: F8-SIP demonstrated a time and hemodynamic dependent tumor specific accumulation. A significantly higher vascular accumulation occurred with antiangiogenic treatment compared to untreated tumors enabling visualization of resistant tumor vessels by F8-SIP-mediated NIRF imaging. In orthotopic tumors, sunitinib reduced F8-SIP-Alexa-750 enrichment volume but not fluorescence intensity indicative of F8-SIP accumulation in fewer vessels. CONCLUSION: F8-SIP is highly tumor specific with time and hemodynamic dependent biodistribution. The higher vascular accumulation to remaining vessels enables molecular imaging and targeting of therapy resistant tumor vessels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA