Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(5): 4432-4442, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38284564

RESUMO

Two-dimensional transition-metal dichalcogenides have attracted significant attention because of their unique intrinsic properties, such as high transparency, good flexibility, atomically thin structure, and predictable electron transport. However, the current state of device performance in monolayer transition-metal dichalcogenide-based optoelectronics is far from commercialization, because of its substantial strain on the heterogeneous planar substrate and its robust metal deposition, which causes crystalline damage. In this study, we show that strain-relaxed and undamaged monolayer WSe2 can improve a device performance significantly. We propose here an original point-cell-type photodetector. The device consists in a monolayer of an absorbing TMD (i.e., WSe2) simply deposited on a structured electrode, i.e., core-shell silicon-gold nanopillars. The maximum photoresponsivity of the device is found to be 23.16 A/W, which is a significantly high value for monolayer WSe2-based photodetectors. Such point-cell photodetectors can resolve the critical issues of 2D materials, leading to tremendous improvements in device performance.

2.
ACS Sens ; 8(9): 3320-3337, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37602443

RESUMO

Due to miscellaneous toxic gases in the vicinity, there is a burgeoning need for advancement in the existing gas sensing technology not only for the survival of mankind but also for the industries based in various fields such as beverage, forestry, health care, environmental monitoring, agriculture, and military security. A gas sensor must be highly selective toward a specific gas in order to avoid incorrect signals while responding to nontarget gases. This may lead to complex scenarios depicting sensor defects, such as low selectivity and cross-sensitivity. Therefore, a multiplex gas sensor is required to address the problems of cross selectivity by combining different gas sensors, signal processing, and pattern recognition techniques along with the currently employed gas sensing technologies. The different sensing materials used in these sensor arrays will produce a unique response signal for developing a set of identifiers as the input that can be used to recognize a specific gas by its "fingerprint". This review provides a comprehensive review of chemiresistive-based multiplex gas sensors, including various fabrication strategies from expensive to low-cost techniques, advances in sensing materials, and a gist of various pattern recognition techniques used for both rigid and flexible gas sensor applications. Finally, the review assesses the current state-of-the-art in multiplex gas sensor technology and discusses various challenges for future research in this direction.


Assuntos
Agricultura , Materiais Inteligentes , Bebidas , Monitoramento Ambiental , Gases
3.
Nanoscale ; 15(10): 4738-4761, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36808191

RESUMO

Ever since the discovery of black silicon, scientists around the world have been trying to come up with novel, cost-effective methods of utilizing this super material in a variety of different industries due to its remarkably low reflectivity and excellent electronic and optoelectronic properties. In this review, many of the most common methods of black silicon fabrication are exhibited, including metal-assisted chemical etching, reactive ion etching, and femto-second laser irradiation. Different nanostructured silicon surfaces are assessed based on their reflectivity and applicable properties in both the visible wavelength range and the infrared range. The most cost efficient technique for the mass production of black silicon is discussed, as well as some promising contender materials ready to replace silicon. Also, solar cell, IR photo-detector, and antibacterial applications are looked into, along with their respective challenges to date.

4.
Biosensors (Basel) ; 12(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551099

RESUMO

Surface plasmon resonance devices typically rely on the use of gold-coated surfaces, but the use of more abundant metals is desirable for the long-term development of plasmonic biochips. As a substitute for gold, thin copper films have been deposited on glass coverslips by thermal evaporation. As expected, these films immersed in a water solution initially exhibit an intense plasmonic resonance comparable to gold. However, without protection, an angle-resolved optical analysis shows a rapid degradation of the copper, characterized by a continuous angular shift of the plasmonic resonance curve. We show that copper films protected with a thin layer of aluminum oxide of a few nanometers can limit the oxidation rate for a sufficient time to perform some standard measurements. As the process is simple and compatible with the current biochip production technique, such an approach could pave the way for the production of alternative and more sustainable biochips.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Óxido de Alumínio , Cobre , Ressonância de Plasmônio de Superfície/métodos , Ouro
5.
Biosensors (Basel) ; 12(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36290947

RESUMO

In this work, we designed structures based on copper nanosubstrate with graphene and two-dimensional transition metal dichalcogenides (TMDC) in order to achieve an ultrasensitive surface plasmon resonance biosensor. This system contains seven components: SF11 triangular prism, BK-7 glass, Chromium (Cr) adhesion layer, thin copper film, layers of one of the types of transition metal dichalcogenides: MoS2, MoSe2, WS2 or WSe2 (defined as MX2), graphene, sensing layer with biomolecular analyte. Copper was chosen as a plasmonic material because it has a higher conductivity than gold which is commonly used in plasmonic sensors. Moreover, copper is a cheap and widespread material that is easy to produce on a large scale. We have carried out both theoretical and numerical sensitivity calculations of these kinds of structures using the Goos-Hänchen (GH) shift method. GH shift is lateral position displacement of the p-polarized reflected beam from a boundary of two media having different indices of refraction under total internal reflection condition and its value can be retrieved from the phase change of the beam. The SPR signal based on the GH shift is much more sensitive compared to other methods, including angular and wavelength scanning, due to much more abrupt phase change of the SPR reflected light than its intensity ones. By optimizing the parameters of the SPR sensing substrate, such as thickness of copper, number of layers of 2D materials and excitation wavelength, we theoretically showed an enhanced sensitivity with a detection limit 10-9 refractive index unit (RIU).


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Ressonância de Plasmônio de Superfície/métodos , Grafite/química , Cobre , Molibdênio , Técnicas Biossensoriais/métodos , Ouro/química , Nanoestruturas/química , Cromo
6.
Waste Manag ; 144: 210-220, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395506

RESUMO

The recycling of light-emitting diode (LED) lamps and tubes is becoming increasingly important due to their growing market share as energy-efficient lighting technology. Here we report on the use of high voltage electric-pulse fragmentation to recover elementary components such as LED chips and printed circuit boards (drivers). E27 LED lamps with plastic bulbs, which represent 48% of deposits collected by a French company, are used as a case study. More than 150 lamps were tested on a laboratory reactor for electrodynamic fragmentation. The technological process in which highly energetic electrical pulses were applied to materials immersed in water was studied in order to separate the components of the LED lamps using a minimal specific energy. The estimated energy necessary to achieve total separation assessed at 64%, without grinding pretreatment, was 5.2 ± 0.6 kWh per ton, representing a mass recycling rate of 74%. Based on the disassembled material, the commercial value of the recovered materials was thus estimated. Gold, as the most representative material, was found to represent 0.03% of the mass fraction for 83.6% of the total commercial value. The process disassembling capacity is a key issue to increase the recycling rate of current LED lamps and tubes.


Assuntos
Utensílios Domésticos , Plásticos , Eletricidade , Ouro , Iluminação , Reciclagem
7.
ACS Omega ; 7(51): 47840-47850, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591173

RESUMO

Priority substances likely to pollute water can be characterized by mid-infrared spectroscopy based on their specific absorption spectral signature. In this work, the detection of volatile aromatic molecules in the aqueous phase by evanescent-wave spectroscopy has been optimized to improve the detection efficiency of future in situ optical sensors based on chalcogenide waveguides. To this end, a hydrophobic polymer was deposited on the surface of a zinc selenide prism using drop and spin-coating methods. To ensure that the water absorption bands will be properly attenuated for the selenide waveguides, two polymers were selected and compared: polyisobutylene and ethylene/propylene copolymer coating. The system was tested with benzene, toluene, and ortho-, meta-, and para-xylenes at concentrations ranging from 10 ppb to 40 ppm, and the measured detection limit was determined to be equal to 250 ppb under these analytical conditions using ATR-FTIR. The polyisobutylene membrane is promising for pollutant detection in real waters due to the reproducibility of its deposition on selenide materials, the ease of regeneration, the short response time, and the low ppb detection limit, which could be achieved with the infrared photonic microsensor based on chalcogenide materials. To improve the sensitivity of future infrared microsensors, the use of metallic nanostructures on the surface of chalcogenide waveguides appears to be a relevant way, thanks to the plasmon resonance phenomena. Thus, in addition to preliminary surface-enhanced infrared absorption tests using these materials and a functionalization via a self-assembled monolayer of 4-nitrothiophenol, heterostructures combining gold nanoparticles/chalcogenide waveguides have been successfully fabricated with the aim of proposing a SEIRA microsensor device.

8.
Sci Rep ; 10(1): 4237, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144312

RESUMO

Zinc oxide (ZnO) is a stable, direct bandgap semiconductor emitting in the UV with a multitude of technical applications. It is well known that ZnO emission can be shifted into the green for visible light applications through the introduction of defects. However, generating consistent and efficient green emission through this process is challenging, particularly given that the chemical or atomic origin of the green emission in ZnO is still under debate. In this work we present a new method, for which we coin term desulfurization, for creating green emitting ZnO with significantly enhanced quantum efficiency. Solution grown ZnO nanowires are partially converted to ZnS, then desulfurized back to ZnO, resulting in a highly controlled concentration of oxygen defects as determined by X-ray photoelectron spectroscopy and electron paramagnetic resonance. Using this controlled placement of oxygen vacancies we observe a greater than 40-fold enhancement of integrated emission intensity and explore the nature of this enhancement through low temperature photoluminescence experiments.

9.
Nanoscale ; 12(11): 6394-6402, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32140696

RESUMO

The arrangement of plasmonic nanoparticles in a non-symmetrical environment can feature far-field and/or near-field interactions depending on the distance between the objects. In this work, we study the hybridization of three intrinsic plasmonic modes (dipolar, quadrupolar and hexapolar modes) sustained by one elliptical aluminium nanocylinder, as well as behavior of the hybridized modes when the nanoparticles are organized in arrays or when the refractive index of the surrounding medium is changed. The position and the intensity of these hybridized modes were shown to be affected by the near-field and far-field interactions between the nanoparticles. In this work, two hybridized modes were tuned in the UV spectral range to spectrally coincide with the intrinsic interband excitation and emission bands of ZnO nanocrystals. The refractive index of the ZnO nanocrystal layer influences the positions of the plasmonic modes and increases the role of the superstrate medium, which in turn results in the appearance of two separate modes in the small spectral region. Hence, the enhancement of ZnO nanocrystal photoluminescence benefits from the simultaneous excitation and emission enhancements.

11.
Nanoscale Adv ; 2(11): 5288-5295, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36132032

RESUMO

ZnO is a highly promising, multifunctional nanomaterial having various versatile applications in the fields of sensors, optoelectronics, photovoltaics, photocatalysts and water purification. However, the real challenge lies in producing large scale, well-aligned, highly reproducible ZnO nanowires (NWs) using low cost techniques. This large-scale production of ZnO NWs has stunted the development and practical usage of these NWs in fast rising fields such as photocatalysis or in photovoltaic applications. The present article shows an effective, simple approach for the uniform, aligned growth of ZnO NWs on entire silicon wafers (sizes 3 or 4 inches), using a low-temperature Chemical Bath Deposition (CBD) technique. In addition to this, a systematic study of the substrate size dependent growth of NWs has been conducted to better understand the effect of the limitation in the deposition rate of Zn2+ ions on the growth of NWs. The growth rate of ZnO NWs is seen to have a strong relationship with the substrate size. Also, the loading efficiency of the Zn2+ ions is higher in ZnO NWs grown on a 3-inch silicon wafer in comparison to those grown on a small piece. An in-depth time dependent growth study conducted on entire 3-inch wafers to track the morphological evolution (length, diameter and number of the NWs) reveals that the growth rate of the length of the NWs reaches a saturation state in a short time span of 20 min. Assessment of the overall homogeneity of the NWs grown on the 3-inch wafer and simultaneous growth on two entire 4-inch silicon wafers has also been demonstrated in this article. This demonstration of large-scale, well-aligned controllable, aligned growth of ZnO NWs on entire silicon wafers is a first step towards NW based devices especially for applications such as photovoltaic, water purification, photocatalysis or biomedical applications.

12.
Sci Rep ; 7: 45726, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374856

RESUMO

In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

13.
Adv Mater ; 29(18)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28262993

RESUMO

This paper reports on the integration of freestanding transition metal dichalcogenides (TMDs). Monolayer (1-L) MoS2 , WS2 , and WSe2 as representative TMDs are transferred on ZnO nanorods (NRs), used here as nanostructured substrates. The photoluminescence (PL) spectra of 1-L TMDs on NRs show a giant PL intensity enhancement, compared with those of 1-L TMDs on SiO2 . The strong increases in Raman and PL intensities, along with the characteristic peak shifts, confirm the absence of stress in the TMDs on NRs. In depth analysis of the PL emission also reveals that the ratio between the exciton and trion peak intensity is almost not modified after transfer. The latter shows that the effect of charge transfer between the 1-L TMDs and ZnO NRs is here negligible. Furthermore, confocal PL and Raman spectroscopy reveal a fairly consistent distribution of PL and Raman intensities. These observations are in agreement with a very limited points contact between the support and the 1-L TMDs. The entire process reported here is scalable and may pave the way for the development of very efficient ultrathin optoelectronics.

14.
Nano Lett ; 16(3): 1858-62, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26886870

RESUMO

We present a novel metal-insulator-semiconductor (MIS) diode consisting of graphene, hexagonal BN, and monolayer MoS2 for application in ultrathin nanoelectronics. The MIS heterojunction structure was fabricated by vertically stacking layered materials using a simple wet chemical transfer method. The stacking of each layer was confirmed by confocal scanning Raman spectroscopy and device performance was evaluated using current versus voltage (I-V) and photocurrent measurements. We clearly observed better current rectification and much higher current flow in the MIS diode than in the p-n junction and the metal-semiconductor diodes made of layered materials. The I-V characteristic curve of the MIS diode indicates that current flows mainly across interfaces as a result of carrier tunneling. Moreover, we observed considerably high photocurrent from the MIS diode under visible light illumination.

15.
ACS Nano ; 9(10): 10032-8, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26434984

RESUMO

We propose a semiconductor-insulator-semiconductor (SIS) heterojunction diode consisting of monolayer (1-L) MoS2, hexagonal boron nitride (h-BN), and epitaxial p-GaN that can be applied to high-performance nanoscale optoelectronics. The layered materials of 1-L MoS2 and h-BN, grown by chemical vapor deposition, were vertically stacked by a wet-transfer method on a p-GaN layer. The final structure was verified by confocal photoluminescence and Raman spectroscopy. Current-voltage (I-V) measurements were conducted to compare the device performance with that of a more classical p-n structure. In both structures (the p-n and SIS heterojunction diode), clear current-rectifying characteristics were observed. In particular, a current and threshold voltage were obtained for the SIS structure that was higher compared to that of the p-n structure. This indicated that tunneling is the predominant carrier transport mechanism. In addition, the photoresponse of the SIS structure induced by the illumination of visible light was observed by photocurrent measurements.

16.
Sci Rep ; 5: 9373, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25792246

RESUMO

Carrier localization phenomena in indium-rich InGaN/GaN multiple quantum wells (MQWs) grown on sapphire and GaN substrates were investigated. Temperature-dependent photoluminescence (PL) spectroscopy, ultraviolet near-field scanning optical microscopy (NSOM), and confocal time-resolved PL (TRPL) spectroscopy were employed to verify the correlation between carrier localization and crystal quality. From the spatially resolved PL measurements, we observed that the distribution and shape of luminescent clusters, which were known as an outcome of the carrier localization, are strongly affected by the crystalline quality. Spectroscopic analysis of the NSOM signal shows that carrier localization of MQWs with low crystalline quality is different from that of MQWs with high crystalline quality. This interrelation between carrier localization and crystal quality is well supported by confocal TRPL results.

17.
Materials (Basel) ; 8(4): 1682-1703, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28788025

RESUMO

We discuss a recently proposed novel photonic approach for enhancing the fluorescence of extremely thin chemosensing polymer layers. We present theoretical and experimental results demonstrating the concept of gain-assisted waveguided energy transfer (G-WET) on a very thin polymer nanolayer spincoated on an active ZnO thin film. The G-WET approach is shown to result in an 8-fold increase in polymer fluorescence. We then extend the G-WET concept to nanostructured media. The benefits of using active nanostructured substrates on the sensitivity and fluorescence of chemosensing polymers are discussed. Preliminary theoretical results on enlarged sensing surface and photonic band-gap are presented.

18.
Beilstein J Nanotechnol ; 5: 1203-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161854

RESUMO

Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ) posts, on the self-organization of polystyrene beads (PS) dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching.

19.
J Opt Soc Am A Opt Image Sci Vis ; 30(11): 2347-55, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24322935

RESUMO

We study the optical coupling between a gold nanowire and a silver ion-exchanged waveguide, with special emphasis on the nanowire antenna radiation pattern. We measure the radiation patterns of waveguide-coupled gold nanowires with a height of 70 nm and width of 50 or 150 nm in the 450-700 nm spectral range for TE and TM polarizations. We perform a systematic theoretical study on the wavelength, polarization, nanowire size, and material dependences on the properties of the radiation pattern. We also give some elements concerning absorption and near-field. Experiments and calculations show localized plasmon resonance for the polarization orthogonal to the wire (far-field resonance at 580 nm for the smallest wire and 670 nm for the widest). It is shown that a great variety of radiation patterns can be obtained, together with a high sensitivity to a change of one parameter, particularly near-resonance.

20.
Nanoscale Res Lett ; 8(1): 517, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314071

RESUMO

We report on efficient ZnO nanocrystal (ZnO-NC) emission in the near-UV region. We show that luminescence from ZnO nanocrystals embedded in a SiO2 matrix can vary significantly as a function of the annealing temperature from 450°C to 700°C. We manage to correlate the emission of the ZnO nanocrystals embedded in SiO2 thin films with transmission electron microscopy images in order to optimize the fabrication process. Emission can be explained using two main contributions, near-band-edge emission (UV range) and defect-related emissions (visible). Both contributions over 500°C are found to be size dependent in intensity due to a decrease of the absorption cross section. For the smallest-size nanocrystals, UV emission can only be accounted for using a blueshifted UV contribution as compared to the ZnO band gap. In order to further optimize the emission properties, we have studied different annealing atmospheres under oxygen and under argon gas. We conclude that a softer annealing temperature at 450°C but with longer annealing time under oxygen is the most preferable scenario in order to improve near-UV emission of the ZnO nanocrystals embedded in an SiO2 matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...