Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 126(1): 73-83, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193530

RESUMO

BACKGROUND AND AIMS: Afromontane forests host a unique biodiversity distributed in isolated high-elevation habitats within a matrix of rain forests or savannahs, yet they share a remarkable flora that raises questions about past connectivity between currently isolated forests. Here, we focused on the Podocarpus latifolius-P. milanjianus complex (Podocarpaceae), the most widely distributed conifers throughout sub-Saharan African highlands, to infer its demographic history from genetic data. METHODS: We sequenced the whole plastid genome, mitochondrial DNA regions and nuclear ribosomal DNA of 88 samples from Cameroon to Angola in western Central Africa and from Kenya to the Cape region in eastern and southern Africa to reconstruct time-calibrated phylogenies and perform demographic inferences. KEY RESULTS: We show that P. latifolius and P. milanjianus form a single species, whose lineages diverged during the Pleistocene, mostly between approx, 200 000 and 300 000 years BP, after which they underwent a wide range expansion leading to their current distributions. Confronting phylogenomic and palaeoecological data, we argue that the species originated in East Africa and reached the highlands of the Atlantic side of Africa through two probable latitudinal migration corridors: a northern one towards the Cameroon volcanic line, and a southern one towards Angola. Although the species is now rare in large parts of its range, no demographic decline was detected, probably because it occurred too recently to have left a genetic signature in our DNA sequences. CONCLUSIONS: Despite the ancient and highly fluctuating history of podocarps in Africa revealed by palaeobotanical records, the extended distribution of current P. latifolius/milanjianus lineages is shown to result from a more recent history, mostly during the mid-late Pleistocene, when Afromontane forests were once far more widespread and continuous.


Assuntos
Florestas , Árvores , África , África Oriental , África Ocidental , Variação Genética , Filogenia , Filogeografia
2.
Sci Rep ; 9(1): 17912, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784587

RESUMO

The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex, Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal range of 30°S to 0°S. In addition, Principal Component Analysis and Species Distribution Modelling were used to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil and Amazonia with a third short route extending from one of them. Their paleofloristic compositions suggest a climatic scenario of abundant rainfall and relative lower continental surface temperatures, possibly intensified by the effects of polar air incursions forming cold fronts into the Brazilian Highlands. Although these taxa are sensitive to changes in temperature, the combined pollen and speleothems proxy data indicate that this montane rainforest expansion during Heinrich Stadial 1 Event was triggered mainly by a less seasonal rainfall regime from the subtropics to the equatorial region.

3.
Science ; 363(6423): 177-181, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30630932

RESUMO

Pollen records from African highlands are scarce; hence, the paleoecology of the Afromontane forest and its responses to glacial cycles are poorly known. Lake Bambili (Cameroon) provides a record of vegetation changes in the tropical mountains of Africa over the past 90,000 years, with high temporal resolution. Pollen data and biome reconstructions show a diverging response of forests to climate changes; the upper tree line was extremely unstable, shifting substantially in response to glacial-interglacial climate alternation, whereas the transition between the montane and lowland forests remained remarkably stable. Such ecological instability may have had a critical influence on species richness in the Afromontane forests.


Assuntos
Mudança Climática , Ecossistema , Florestas , Camarões , Lagos , Paleontologia , Pólen/classificação , Árvores/classificação
4.
Science ; 361(6405): 920-923, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166491

RESUMO

Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.


Assuntos
Biodiversidade , Mudança Climática
5.
Glob Chang Biol ; 24(7): 2939-2951, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29700905

RESUMO

African ecosystems are at great risk. Despite their ecological and economic importance, long-standing ideas about African forest ecology and biogeography, such as the timing of changes in forest extent and the importance of disturbance, have been unable to be tested due to a lack of sufficiently long records. Here, we present the longest continuous terrestrial record of late Quaternary vegetation from southern Africa collected to date from a drill core from Lake Malawi covering the last ~600,000 years. Pollen analysis permits us to investigate changes in vegetation structure and composition over multiple climatic transitions. We observe nine phases of forest expansion and collapse related to regional hydroclimate change. The development of desert, steppe and grassland vegetation during arid periods is likely dynamically linked to thresholds in regional hydrology associated with lake level and moisture recycling. Species composition of these dryland ecosystems varied greatly and is unlike the vegetation found at Malawi today, with assemblages suggesting strong Somali-Masai affinities. Furthermore, nearly all semiarid assemblages contain low forest taxa abundances, suggesting that moist lowland gallery forests formed refugia along waterways during arid times. When the region was wet, forests were species-rich and very high afromontane tree abundances suggest frequent widespread lowland colonization by modern high elevation trees. Furthermore, species composition varied little amongst forest phases until ~80 ka when disturbance tolerant tree taxa characteristic of the modern vegetation increased in abundance. The waxing and waning of forests has important implications for understanding the processes that control modern tropical vegetation biogeography as well as the environments of early humans across Africa. Finally, this work highlights the resilience of montane forests during previous warm intervals, which is relevant for future climate change; however, we point to a fundamental shift in disturbance regimes which are crucial for the structure and composition of modern East African landscapes.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , África , Evolução Biológica , Humanos
6.
PLoS One ; 9(11): e112855, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25406090

RESUMO

Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼ 18-9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.


Assuntos
Silicatos de Alumínio/química , Mudança Climática/história , Sedimentos Geológicos/química , Lagos , Fenômenos Fisiológicos Vegetais , Pólen/citologia , Argila , Geografia , História Antiga , Caulim/análise , Malaui , Tamanho da Partícula , Chuva , Silicatos/análise , Especificidade da Espécie , Clima Tropical , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...