Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36363630

RESUMO

Composite polymeric membranes were designed based on sulfonated poly(ether ether sulfone) (sPEES) and mesostructured cellular foam (MCF) silica nanoparticles functionalized with organic compounds. Parameters such as molecular weight (MW) of the polymer, nature of the functional group of the MCF silica, and percentage of silica charge were evaluated on the final properties of the membranes. Composite membrane characterization was carried out on their water retention capacity (high MW polymer between 20-46% and for the low MW between 20-60%), ion exchange capacity (IEC) (high MW polymer between 0.02 mmol/g-0.07 mmol/g and low MW between 0.03-0.09 mmol/g) and proton conductivity (high MW polymer molecular between 15-70 mS/cm and low MW between 0.1-150 mS/cm). Finally, the membrane prepared with the low molecular weight polymer and 3% wt. of functionalized silica with sulfonic groups exhibited results similar to Nafion® 117.

2.
Islets ; 14(1): 164-183, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35838041

RESUMO

Transplantation of pancreatic islets is a promising approach to controlling glucose levels in type 1 diabetes mellitus (T1DM), but islet survival is still limited. To overcome this, islet co-culture with mesenchymal stromal cells (MSCs) together with safe immunosuppressive agents like squalene-gusperimus nanoparticles (Sq-GusNPs) may be applied. This could support islet survival and engraftment. Here, we studied how Sq-GusNPs and adipose-derived stem cells (ASCs) influence islets response under pro-inflammatory conditions. Through qRT-PCR, we studied the expression of specific genes at 24 hours in human and rat islets and ASCs in co-culture under indirect contact with or without treatment with Sq-GusNPs. We characterized how the response of islets and ASCs starts at molecular level before impaired viability or function is observed and how this response differs between species. Human islets and ASCs responses showed to be principally influenced by NF-κB activation, whereas rat islet and ASCs responses showed to be principally mediated by nitrosative stress. Rat islets showed tolerance to inflammatory conditions due to IL-1Ra secretion which was also observed in rat ASCs. Human islets induced the expression of cytokines and chemokines with pro-angiogenic, tissue repair, and anti-apoptotic properties in human ASCs under basal conditions. This expression was not inhibited by Sq-GusNPs. Our results showed a clear difference in the response elicited by human and rat islets and ASCs in front of an inflammatory stimulus and Sq-GusNPs. Our data support the use of ASCs and Sq-GusNP to facilitate engraftment of islets for T1DM treatment.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Nanopartículas , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Guanidinas , Humanos , Imunossupressores , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Ratos , Esqualeno/metabolismo , Células-Tronco/metabolismo
3.
Int J Biol Macromol ; 205: 1-14, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35181318

RESUMO

This study proposes a simple route to obtain starch grafted copolymers from cassava and banana starches chemically modified with amphiphilic maleic anhydride-poly (ethylene glycol) methyl ether (Ma-mPEG). The starches were extracted from cassava (StC) and banana (StB) pulp and characterized by FTIR spectroscopy, amylose content, scanning electron microscope (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and average molecular weight. Starches were chemically modified with amphiphilic Ma-mPEG in three mass ratios 1:1, 1:2 and 1:3. Thermal behavior and interactions of Ma-mPEG/starch in the St-g-(Ma-mPEG) copolymers were studied by DSC and TGA. The Tg values showed a higher plasticizer effect in the copolymers obtained from StC. Films were formed from StC-g-(Ma-mPEG) and StB-g-(Ma-mPEG) copolymers, thermal and morphological properties were studied. An increase in the mass ratios of Ma-mPEG and the absence of the glycerol in the formulations formed homogeneous films. StC-g-(Ma-mPEG) 1:3 with 2% concentration showed a potential use as coating in strawberries, presenting a lower weight loss (15.5 ± 5.7%) than the control sample (18.6 ± 3.3%).


Assuntos
Manihot , Éteres Metílicos , Musa , Anidridos Maleicos , Polietilenoglicóis/química , Amido/química
4.
Artif Cells Nanomed Biotechnol ; 49(1): 651-661, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34751061

RESUMO

Gusperimus is an anti-inflammatory drug that has shown to be effective in managing autoimmunity and preventing graft rejection. This is unstable and easily broken down into cytotoxic components. We encapsulated gusperimus binding it covalently to squalene obtaining squalene-gusperimus nanoparticles (Sq-GusNPs). These nanoparticles enhanced the immunosuppressive effect of gusperimus in both mouse macrophages and T cells. The half-maximal inhibitory concentration in macrophages was 9-fold lower for Sq-GusNPs compared with the free drug. The anti-inflammatory effect of the Sq-GusNPs was maintained over time without cytotoxicity. By studying nanoparticles uptake by cells with flow cytometry, we demonstrated that Sq-GusNPs are endocytosed by macrophages after binding to low-density lipoprotein receptors (LDLR). In presence of cathepsin B or D release of gusperimus is increased demonstrating the participation of proteases in the release process. Our approach may allow the application of Sq-GusNPs for effective management of inflammatory disorders including autoimmunity and graft rejection.


Assuntos
Nanopartículas , Esqualeno , Animais , Guanidinas/metabolismo , Macrófagos/metabolismo , Camundongos , Esqualeno/metabolismo , Esqualeno/farmacologia
5.
Polymers (Basel) ; 12(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948030

RESUMO

In this study, pectins were extracted from banana wastes Musa paradisiaca under different acidic conditions, obtaining pectins with different degrees of esterification (DE) depending on the acid type and pH. The formation of the polyelectrolyte nanoparticles was evaluated according to the DE of the pectin, the mass ratio of the polymers of pectin to amphiphilic chitosan (AmCh), and their concentration. The properties of the polyelectrolyte nanoparticles were evaluated at different pH and temperatures. The pectin with 24.3% DE formed polyelectrolyte nanoparticles through the electrostatic interaction with AmCh, which was evidenced by changes in the zeta potential and particle size. The study of mass ratio AmCh:Pectin, to get a stable system, showed that it must be at least equal (1:1), or AmCh must be in higher proportion (6:1, 50:1, 100:1), and the polymers concentration must be 1 mg/mL. The study of the temperature effect showed that, when the temperature increases, the particle size decreases, and the pH study showed a stable particle size for the polyelectrolyte nanoparticles in the range of pH 5-6. Nile Red (NR), a hydrophobic molecule, was encapsulated in the polyelectrolyte nanoparticles with a loading capacity of 1.8% and an encapsulation efficiency of 80%.

6.
Int J Pharm ; 590: 119893, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32956823

RESUMO

Immunosuppressive drugs are widely used for the treatment of autoimmune diseases and to prevent rejection in organ transplantation. Gusperimus is a relatively safe immunosuppressive drug with low cytotoxicity and reversible side effects. It is highly hydrophilic and unstable. Therefore, it requires administration in high doses which increases its side effects. To overcome this, here we encapsulated gusperimus as squalene-gusperimus nanoparticles (Sq-GusNPs). These nanoparticles (NPs) were obtained from nanoassembly of the squalene gusperimus (Sq-Gus) bioconjugate in water, which was synthesized starting from squalene. The size, charge, and dispersity of the Sq-GusNPs were optimized using the response surface methodology (RSM). The colloidal stability of the Sq-GusNPs was tested using an experimental block design at different storage temperatures after preparing them at different pH conditions. Sq-GusNPs showed to be colloidally stable, non-cytotoxic, readily taken up by cells, and with an anti-inflammatory effect sustained over time. We demonstrate that gusperimus was stabilized through its conjugation with squalene and subsequent formation of NPs allowing its controlled release. Overall, the Sq-GusNPs have the potential to be used as an alternative in approaches for the treatment of different pathologies where a controlled release of gusperimus could be required.


Assuntos
Nanopartículas , Esqualeno , Guanidinas , Imunidade Inata
7.
Nanomedicine (Lond) ; 10(11): 1735-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26080696

RESUMO

AIM: Drug targeting to the CNS is challenging due to the presence of blood-brain barrier. We investigated chitosan (Cs) nanoparticles (NPs) as drug transporter system across the blood-brain barrier, based on mAb OX26 modified Cs. MATERIALS & METHODS: Cs NPs functionalized with PEG, modified and unmodified with OX26 (Cs-PEG-OX26) were prepared and chemico-physically characterized. These NPs were administered (intraperitoneal) in mice to define their ability to reach the brain. RESULTS: Brain uptake of OX26-conjugated NPs is much higher than of unmodified NPs, because: long-circulating abilities (conferred by PEG), interaction between cationic Cs and brain endothelium negative charges and OX26 TfR receptor affinity. CONCLUSION: Cs-PEG-OX26 NPs are promising drug delivery system to the CNS.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Quitosana/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Quitosana/efeitos adversos , Humanos , Camundongos , Nanopartículas/efeitos adversos , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos
8.
J Nanosci Nanotechnol ; 14(7): 4918-29, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24757963

RESUMO

Carbon nanotubes (CNTs) and sepiolite (SEP) were modified in order to improve their compatibility with the polypropylene (PP) matrix. Carboxylic groups were introduced into the CNTs through an oxidative treatment and aliphatic chains were incorporated on SEP by ion exchange of a cationic surfactant. Maleic anhydride grafted polypropylene (PPgMA) was mixed with neat PP to introduce polar groups into the polymer matrix. Composites including modified and non-modified fillers were prepared by melt extrusion. Dispersion and interaction of the CNTs with the PP and PPgMA matrices were evaluated by Raman spectroscopy while a focused ion beam/scanning electron microscopy (FIB/SEM) was used for SEP containing composites. Scratch resistance, microhardness, dynamic friction and wear were determined. Raman spectroscopy shows that the introduction of polar groups into PP matrices has a positive effect on the dispersion of modified CNTs. FIB/SEM results show that the modification of SEP improves its dispersion in the polypropylene matrix; filler clusters found in the PPgMA matrix are much times smaller than those in the neat PP. Despite of SEP agglomerates in the composites, a good interaction between both phases is seen; SEP particles are fully coated and embedded inside the PP matrix. The 'lack of cooperation' between unmodified PP and its fillers results in nanocomposites with larger residual depths; by contrast, PPgMA does 'cooperate' with its fillers so that the nanocomposites in scratch resistance testing have smaller residual depths R(h) than the neat PPgMA. Addition of the fillers to PPgMA also increases the hardness. As for wear rates, some our fillers provide higher and some lower wear rates than PP.

9.
J Mater Sci Mater Med ; 24(4): 1043-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23361967

RESUMO

Cell sheet technology is a promising step forward in tissue engineering. Cell sheets are usually generated using Poly(N-isopropylacrylamide) hydrogels due to their swelling change around the lower critical solution temperature (LCST). Nevertheless, LCST can be affected by cell culture medium components and therefore it is necessary to ensure that the polymer preserves its thermosensitivity under these conditions. We propose a novel thermosensitive crosslinked-copolymer: Poly(N-isopropylacrylamide-co-butylacrylate). This copolymer is shown to be cytocompatible and thermosensitive under cell culture medium conditions, and besides, it can be synthesized inexpensively. Thermosensitivity was investigated by determining the LCST with differential scanning calorimetry and swelling/ratio measurements. Cytocompatibility and capacity to deliver cell sheets were studied employing 3T3 and human oral epithelial cells. In conclusion, we obtained a thermosensitive copolymer that allows cell sheet formation/detachment by using a simple and low-cost polymerization method. Furthermore, crosslinking allows easy manipulation of cell sheets growing on the copolymer for potential in situ applications.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis , Células 3T3 , Animais , Meios de Cultura , Camundongos , Microscopia Eletrônica de Varredura
10.
J Nanosci Nanotechnol ; 9(11): 6661-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19908581

RESUMO

Two silicas with different particle sizes have been synthesized by the Stöber method. The particles have been functionalized with methacryloyl groups. In situ emulsion polymerization of butyl acrylate and methyl methacrylate in the presence of functionalized silica particles was performed. The ratio of butyl acrylate to methyl methacrylate was varied in order to optimize the composition for improvement of tribological and thermophysical properties. The silica particles morphology and functionalization have been determined respectively by scanning electronic microscopy and infrared spectroscopy. The composites were characterized also by thermogravimetric analysis, differential scanning calorimetry, microscratch testing and static light scattering. The latex reinforced with the smallest functionalized silica exhibits higher thermal stability than the non reinforced latex, along with lower penetration depth and higher residual depth in progressive load scratch testing. Thus, the resistance to penetration is increased while viscoelastic healing is hampered by silica particles.

11.
J Nanosci Nanotechnol ; 8(6): 3176-83, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18681065

RESUMO

While carbon nanotubes have been used for a variety of purposes, it was not known whether they can improve tribological properties of polymers. Polyamide 6 (PA6) has been reinforced with 0.2, 0.5 and 1.0 wt% of multiwall carbon nanotubes (MWCNTs) by melt mixing process and characterized by scanning electron microscopy (SEM), transmission electron microscopy, thermogravimetric analysis (TGA), scratching, sliding wear and tensile testing. TGA results for the air atmosphere show that MWCNTs shift the onset of thermal degradation to higher temperatures. Sliding wear tests show that the penetration depth decreases as the concentration of carbon nanotubes increases. However, the viscoelastic healing is hampered by the MWCNTs presence and the residual depths increase at the same time. Narrower scratch groove widths are seen in SEM for composites with MWCNTs, and scratch hardness increases. Tensile tests show an increase of 27% in the Young modulus value upon addition of 1.0% of MWCNTs. The stress at yield is also higher for the nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...