Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
ACS Omega ; 9(10): 11418-11430, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496952

RESUMO

The urgent need for effective treatments against emerging viral diseases, driven by drug-resistant strains and new viral variants, remains critical. We focus on inhibiting the human dihydroorotate dehydrogenase (HsDHODH), one of the main enzymes responsible for pyrimidine nucleotide synthesis. This strategy could impede viral replication without provoking resistance. We evaluated naphthoquinone fragments, discovering potent HsDHODH inhibition with IC50 ranging from 48 to 684 nM, and promising in vitro anti-SARS-CoV-2 activity with EC50 ranging from 1.2 to 2.3 µM. These compounds exhibited low toxicity, indicating potential for further development. Additionally, we employed computational tools such as molecular docking and quantitative structure-activity relationship (QSAR) models to analyze protein-ligand interactions, revealing that these naphthoquinones exhibit a protein binding pattern similar to brequinar, a potent HsDHODH inhibitor. These findings represent a significant step forward in the search for effective antiviral treatments and have great potential to impact the development of new broad-spectrum antiviral drugs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38381316

RESUMO

This study focused on developing electrically stimulable hyaluronic acid (HA) films incorporating lipid nanoparticles (NPs) designed for the topical administration of lipophilic drugs and macromolecules. Based on beeswax and medium-chain triglycerides, NPs were successfully integrated into silk fibroin/chitosan films containing HA (NP-HA films) at a density of approximately 1011 NP/cm2, ensuring a uniform distribution. This integration resulted in a 40% increase in film roughness, a twofold decrease in Young's modulus, and enhanced film flexibility and bioadhesion work. The NP-HA films, featuring Ag/AgCl electrodes, demonstrated the capability to conduct a constant electrical current of 0.2 mA/cm2 without inducing toxicity in keratinocytes and fibroblasts during a 15-min application. Moreover, the NPs facilitated the homogeneous distribution of lipophilic drugs within the film, effectively transporting them to the skin and uniformly distributing them in the stratum corneum upon film administration. The sustained release of HA from the films, following Higuchi kinetics, did not alter the macroscopic characteristics of the film. Although anodic iontophoresis did not noticeably affect the release of HA, it did enhance its penetration into the skin. This enhancement facilitated the permeation of HA with a molecular weight (MW) of up to 2 × 105 through intercellular and transcellular routes. Confocal Raman spectroscopy provided evidence of an approximate 100% increase in the presence of HA with a MW in the range of 1.5-1.8 × 106 in the viable epidermis of human skin after only 15 min of iontophoresis applied to the films. Combining iontophoresis with NP-HA films exhibits substantial potential for noninvasive treatments focused on skin rejuvenation and wound healing.

3.
Front Vet Sci ; 10: 1278329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869491

RESUMO

Bovine tuberculosis (bTB) is a chronic disease mainly caused by Mycobacterium bovis, a zoonotic pathogen with economic significance as it leads to reduced milk and meat production, and high costs for control measures. The Bacillus Calmette-Guérin (BCG) vaccine, primarily used to prevent tuberculosis in humans, has also been studied for controlling bTB. While showing effectiveness in preventing M. bovis infection and disease in cattle, the BCG vaccine can induce non-specific effects on the immune system, enhancing responses to infections caused by unrelated pathogens, and also having non-specific effects on lactation. The aim of this study is to describe both the specific and non-specific effects of BCG vaccination in calves from a commercial dairy herd in central Chile. Diagnosis of M. bovis infection was performed through the IFNγ release assay (IGRA) using ESAT6/CFP-10 and Rv3615c antigens. The records of milk production, somatic cell count (SCC), clinical mastitis (CM) and retained placenta (RP) during the first lactation were compared between vaccinated and non-vaccinated animals. The breed (Holstein Friesian [HF] v/s HF × Swedish Red crossbred [HFSR]) and the season (warm v/s cold) were also analyzed as categorical explanatory variables. Results of IGRA showed significant differences between vaccinated and control groups, indicating a vaccine efficacy of 58.5% at 18 months post vaccination in HFSR crossbred animals. Although milk production did not vary, SCC and CM showed differences between groups, associated to the breed and the season, respectively. When analyzing CM and RP as a whole entity of disease, BCG showed protection in all but the cold season variables. Overall, the BCG vaccine induced protective specific and non-specific effects on health parameters, which may be influenced by the breed of animals and the season. These results provide new features of BCG protection, supporting initiatives for its implementation as a complementary tool in bTB control.

4.
Int J Pharm ; 646: 123431, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37739094

RESUMO

The potential of low-frequency ultrasound (LFU) combined with nanotechnology-based formulations in improving skin tumors topical treatment was investigated. The impact of solid lipid nanoparticles (SLN) and hydrophilic nanogels as coupling media on LFU-induced skin localized transport regions (LTR) and the penetration of doxorubicin (DOX) in LFU-pretreated skin was evaluated. SLN were prepared by the microemulsion technique and liquid crystalline nanogels using Poloxamer. In vitro, the skin was pretreated with LFU until skin resistivity of âˆ¼1 KΩ.cm2 using the various coupling media followed by evaluation of DOX penetration from DOX-nanogel and SLN-DOX in skin layers. Squamous cell carcinoma (SCC) induced in mice was LFU-treated using the nanogel with the LFU tip placed 5 mm or 10 mm from the tumor surface, followed by DOX-nanogel application. LFU with nanogel coupling achieved larger LTR areas than LFU with SLN coupling. In LFU-pretreated skin, DOX-nanogel significantly improved drug penetration to the viable epidermis, while SLN-DOX hindered drug transport through LTR. In vivo, LFU-nanogel pretreatment with the 10 mm tip distance induced significant tumor inhibition and reduced tumor cell numbers and necrosis. These findings suggest the importance of optimizing nanoparticle-based formulations and LFU parameters for the clinical application of LFU technology in skin tumor treatment.

5.
Pharmaceutics ; 15(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986857

RESUMO

Vegetable oils offer excellent biological properties, but their high lipophilicity limits their bioavailability. This work aimed to develop nanoemulsions based on sunflower and rosehip oils and to evaluate their wound-healing activity. The influence of phospholipids of plant origin on nanoemulsions' characteristics was investigated. A nanoemulsion prepared with a mixture of phospholipids and synthetic emulsifiers (Nano-1) was compared with another prepared only with phospholipids (Nano-2). The healing activity was evaluated in wounds induced in human organotypic skin explant culture (hOSEC) based on histological and immunohistochemical analysis. The hOSEC wound model was validated, showing that high nanoparticle concentration in the wound bed interferes with cell mobility and the ability to respond to the treatment. Nanoemulsions were 130 to 370 nm, with a concentration of 1013 particles/mL, and a low potential to induce inflammatory processes. Nano-2 was three times larger than Nano-1 but less cytotoxic and could target the oils to the epidermis. Nano-1 permeated intact skin to the dermis and showed a more prominent healing effect than Nano-2 in the hOSEC wound model. Changes in the lipid nanoemulsion stabilizers impacted the cutaneous and cellular penetration of the oils, cytotoxicity, and healing kinetics, resulting in versatile delivery systems.

6.
Bioelectrochemistry ; 151: 108374, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36750011

RESUMO

Iontophoresis, a non-invasive application of a constant low-intensity electric current, is a promising strategy to accelerate wound healing. Although its mechanisms are not yet fully elucidated, part of its action seems related to inhibiting bacteria growth. This work aimed to investigate the antimicrobial effect of iontophoresis using Staphylococcus epidermidis and Escherichia coli strains, Gram-positive and Gram-negative bacteria, respectively. Anodic iontophoresis was applied to each bacterial suspension using Ag/AgCl electrodes, and bacteria viability was evaluated after 24 h incubation by counting colony-forming units. A Quality-by-Design approach was performed to assess the influence of the iontophoresis' intensity and application time on bacterial viability. Cell morphology was evaluated by scanning electron microscopy. Iontophoresis showed antimicrobial effects on the Gram-positive bacteria only at 5 mA and 60 min application. However, a linear relationship was observed between intensity and application time for the Gram-negative one, causing drastic morphological changes and up to 98 % death. The cell wall of Gram-negative bacteria seems more susceptible to disorganization triggered by iontophoresis-induced ion transport than Gram-positive ones. Therefore, anodic iontophoresis can be a powerful ally in controlling Gram-negative bacteria proliferation in wounds.


Assuntos
Bactérias Gram-Negativas , Iontoforese , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Escherichia coli
7.
Int J Pharm ; 610: 121243, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743959

RESUMO

Sonodynamic therapy (SDT) is a new therapeutic modality for noninvasive cancer treatment based on the association of ultrasound and sonosensitizer drugs. Up to date, there is not a consensus on the standardization of the experimental conditions for the in vitro studies to correctly assess cell viability during SDT. Therefore, this review article mainly describes how the main ultrasound parameters and experimental setups of ultrasound application in vitro studies can influence the SDT bioeffects/response. The sonodynamic action is impacted by the combination of frequency, intensity, duty cycle, and ultrasound application time. The variation of experimental setups in cell culture, such as the transducer position, cell-transducer distance, coupling medium thickness, or type of culture, also influences the sonodynamic response. The intensity, duty cycle, and sonication duration increase cytotoxicity and reactive oxygen species production. For similar ultrasound parameters, differences in the experimental configuration impact cell death in vitro. Four main experimental setups are used to assess for SDT in cell culture (i) a planar transducer placed directly in contact with the bottom of the culture microplate; (ii) microplate positioned in the transducer's far-field using a water tank; (iii) sealed cell culture tubes immersed in water away from the transducer; and (iv) transducer dipped directly into the well with cell culture. Because of the significant variations in the experimental setups, sonodynamic response can significantly vary, and the translation of these results for in vivo experimentation is difficult. Therefore, a well-designed and detailed in vitro experimental setup is vital for understanding the interactions among the biological medium, the sonosensitizer, and the ultrasound for the in vitro to in vivo translation in SDT.


Assuntos
Terapia por Ultrassom , Linhagem Celular Tumoral , Sobrevivência Celular , Espécies Reativas de Oxigênio , Sonicação , Ultrassonografia
8.
Int J Pharm ; 610: 121217, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688848

RESUMO

In acne management, oral isotretinoin (IST) is associated with various untoward systemic effects, while its topical formulation has irritation side effects. Delonix (DLX) is a natural galactomannan derived from Delonix regia seed that can fabricate nanoparticles for topical skin delivery. This study aims to develop IST-DLX nanoparticles and assess their prospects for acne treatment. Fluorescent-DLX nanoparticles (made with a lipophilic BODIPY dye) or IST-DLX nanoparticles were prepared and characterized. BODIPY-DLX nanoparticles' skin distribution and IST-DLX nanoparticles' in-vitro targeting were assessed in pig ear skin, inflammatory modulation was assessed in AMJ-2 macrophage cells, while skin penetration and irritation were assessed in Wistar rats. IST-DLX nanoparticles had ≈230 nm, negative zeta potential, and ≈30% encapsulation efficiency. Confocal showed BODIPY in DLX nanoparticles accumulated in hair follicles as compared to BODIPY solution. IST-DLX nanoparticles released ≈37% IST over 48 h and increased IST 3-fold in hair follicles compared to IST solution. IST-DLX nanoparticles suppressed IL-6 expression in cells and reduced photo-irritation in Wistar rats compared to IST solution. In conclusion, IST-DLX nanoparticles may target and deliver adequate IST to skin layers associated with acne, avoid systemic penetration, modulate inflammatory pathogenic acne stage and prevent IST topical photo-irritation.


Assuntos
Acne Vulgar , Fabaceae , Nanopartículas , Acne Vulgar/tratamento farmacológico , Animais , Portadores de Fármacos/uso terapêutico , Isotretinoína , Ratos , Ratos Wistar , Pele , Suínos
9.
Plant Foods Hum Nutr ; 76(4): 507-515, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716887

RESUMO

Here, we presented new insights of the development of poly(lactic-co-glycolic acid) nanoparticles containing turmeric compounds (turmeric-PLGA-NPs) using emulsion-solvent evaporation method. The nanoparticulate system was characterized by size, zeta potential, morphology, release profile, partition parameter, stability and encapsulation efficiency (%EE). Antioxidant activity studies were also evaluated. The Korsmeyer-Peppas model (Mt/M∞ vs. t) was used to determine the release mechanisms of the studied system. Our results demonstrated the emulsion-solvent evaporation method was shown advantageous for producing turmeric-PLGA-NPs in the range of 145 nm with high homogeneity in size distribution, zeta potential of -21.8 mV and %EE about 72%. Nanoparticles were stable over a period of one month. In vitro study showed a release of curcumin governed by diffusion and relaxation of the polymeric matrix. The partition parameter of the extract in relation to blank-PLGA-NPs was 0.111 ± 0.008 M-1, indicating a low affinity of curcumin for the polymer matrix. Antioxidant ability of the turmeric-PLGA-NPs in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) was inferior to free turmeric extract and showed a concentration and time-dependent profile. The study concluded that PLGA nanoparticles are potential carriers for turmeric extract delivery.


Assuntos
Antioxidantes , Nanopartículas , Antioxidantes/farmacologia , Curcuma , Tamanho da Partícula , Extratos Vegetais/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
10.
Pharmaceutics ; 13(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34575421

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease that is difficult to treat. Traditional cold cream, a water-in-oil emulsion made from beeswax, is used to alleviate AD symptoms in clinical practice, although its effectiveness has not been scientifically proven. The addition of propolis has the potential to impart anti-inflammatory properties to cold cream. However, in high concentrations, propolis can trigger allergic reactions. Thus, the objective of this work was to develop a cold cream formulation based on purified beeswax containing the same amount of green propolis present in raw beeswax. The impact of adding this low propolis concentration to cold cream on AD control was evaluated in patients compared to cold cream without added propolis (CBlank). Raw beeswax was chemically characterized to define the propolis concentration added to the propolis-loaded cold cream (CPropolis). The creams were characterized as to their physicochemical, mechanical, and rheological characteristics. The effect of CPropolis and CBlank on the quality of life, disease severity, and skin hydration of patients with AD was evaluated in a triple-blind randomized preclinical study. Concentrations of 34 to 120 ng/mL of green propolis extract reduced TNF-α levels in LPS-stimulated macrophage culture. The addition of propolis to cold cream did not change the cream's rheological, mechanical, or bioadhesive properties. The preclinical study suggested that both creams improved the patient's quality of life. Furthermore, the use of CPropolis decreased the disease severity compared to CBlank.

11.
Clin Cosmet Investig Dermatol ; 14: 485-499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012282

RESUMO

Alopecia is a clinical condition related to hair loss that can significantly affect both male and female adults' quality of life. Despite the high market demand, only few drugs are currently approved for alopecia treatment. Topical formulations still bring drawbacks, such as scalp irritation with frequent use, and low drug absorption to the site of action, which limits the efficacy. The most recent research points out that different formulation technology could circumvent the aforementioned flaws. Such technology includes incorporation of drugs in rigid or deformable nanoparticles, strategies involving physical, energetical and mechanical techniques, such as iontophoresis, sonophoresis, microneedling, and the use of solid effervescent granules to be hydrated at the moment of application in the scalp. In this paper, the progress of current research on topical formulations dedicated to the treatment of alopecia is reviewed and discussed.

12.
Pharmaceutics ; 13(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946622

RESUMO

Permeation assays are important for the development of topical formulations applied on buccal mucosa. Swine buccal and esophageal epithelia are usually used as barriers for these assays, while frozen epithelia have been used to optimize the experimental setup. However, there is no consensus on these methods. In transdermal studies, barrier integrity has been evaluated by measuring electrical resistance (ER) across the skin, which has been demonstrated to be a simple, fast, safe, and cost-effective method. Therefore, the aims here were to investigate whether ER might also be an effective method to evaluate buccal and esophageal epithelium mucosa integrity for in vitro permeation studies, and to establish a cut-off ER value for each epithelium mucosa model. We further investigated whether buccal epithelium could be substituted by esophageal epithelium in transbuccal permeation studies, and whether their permeability and integrity were affected by freezing at -20 °C for 3 weeks. Fresh and frozen swine buccal and esophageal epithelia were mounted in Franz diffusion cells and were then submitted to ER measurement. Permeation assays were performed using lidocaine hydrochloride as a hydrophilic drug model. ER was shown to be a reliable method for evaluating esophageal and buccal epithelia. The esophageal epithelium presented higher permeability compared to the buccal epithelium. For both epithelia, freezing and storage led to decreased electrical resistivity and increased permeability. We conclude that ER may be safely used to confirm tissue integrity when it is equal to or above 3 kΩ for fresh esophageal mucosa, but not for buccal epithelium mucosa. However, the use of esophageal epithelium in in vitro transmucosal studies could overestimate the absorption of hydrophilic drugs. In addition, fresh samples are recommended for these experiments, especially when hydrophilic drugs are involved.

13.
Eur J Pharm Sci ; 162: 105834, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826936

RESUMO

Gold(III) complexes have been studied for the past years due to their anticancer properties and great affinity to biotargets, such as enzymes and proteins, which support their pharmacological applications. Within this scope, in this work the antiproliferative activities of two Au(III)-thiosemicarbazonate complexes, [AuClL1] (1, L1: (E,Z)-N-ethyl-N'-(3-nitroso-kN)butan-2-ylidene)carbamohydrazonothioato-k2N2,S) and [Au(Hdamp)L2]Cl (2, L2: N-(N'',N''-diethylaminothiocarbonyl)-N'(N''', N'''-dimethylcarbothioamide)benzamidineto-kN,k2S and Hdamp: 2-(N,N-dimethylaminomethyl)-phenyl-C1), and their affinities to possible biological targets were investigated. Three different tumor cell lines were used to perform the cytotoxicity assays, including one cisplatin-resistant model, and the results showed lower EC50 for 1 over 2 in every case: B16F10 (4.1 µM and 15.6 µM), A431 (4.0 µM and >50 µM) and OVCAR3 (4.2 µM and 24.5 µM). However, a lower toxicity to fibroblast 3T3 cell line was observed for 2 (30.58 µM) when compared to 1 (7.17 µM), resulting in comparable therapeutic indexes. Both complexes presented strong affinity to HSA: they distorted the secondary structure of the protein, as verified by circular dichroism, but 1 additionally presented the apparent fluorescence quenching constant (Kapp) ten times greater than 2, which was probably due to the fact of 1 being able to denature HSA. The ethidium bromide displacement assay showed that neither 1 nor 2 are strong DNA intercalators, which is in agreement with what was observed through the UV-vis titration. In both cases, the 260 nm band presented hyperchromism, which can indicate ionic interactions or DNA damage. In fact, 1 was able to damage the pGEM plasmid, similarly to cisplatin, as verified by agarose gel electrophoresis and Atomic Force Microscopy. Biophysical studies in cancer cells model membranes were also performed in order to investigate the interaction of the gold complexes to lipid bilayers and revealed that the compounds interact with the membranes by exhibiting partition coefficients of 103 order of magnitude. Overall, both complexes were found to be promising candidates for the development of a future anticancer drug against low sensitive or cisplatin resistant tumors.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Feminino , Ouro , Humanos , Ligantes
14.
Daru ; 29(1): 223-239, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738722

RESUMO

OBJECTIVE: Review and assess pharmaceutical and clinical characteristics of chloroquine including high-performance liquid chromatography (HPLC)-based methods used to quantify the drug in pharmaceutical products and biological samples. EVIDENCE ACQUISITION: A literature review was undertaken on the PubMed, Science Direct, and Scielo databases using the following keywords related to the investigated subject: 'chloroquine', 'analytical methods', and 'HPLC'. RESULTS: For more than seven decades, chloroquine has been used to treat malaria and some autoimmune diseases, such as lupus erythematosus and rheumatoid arthritis. There is growing interest in chloroquine as a therapeutic alternative in the treatment of HIV, Q fever, Whipple's disease, fungal, Zika, Chikungunya infections, Sjogren's syndrome, porphyria, chronic ulcerative stomatitis, polymorphic light eruption, and different types of cancer. HPLC coupled to UV detectors is the most employed method to quantify chloroquine in pharmaceutical products and biological samples. The main chromatographic conditions used to identify and quantify chloroquine from tablets and injections, degradation products, and metabolites are presented and discussed. CONCLUSION: Research findings reported in this article may facilitate the repositioning, quality control, and biological monitoring of chloroquine in modern pharmaceutical dosage forms and treatments.


Assuntos
Antimaláricos/análise , Cloroquina/análise , Cromatografia Líquida de Alta Pressão/métodos , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Cloroquina/química , Cloroquina/farmacocinética , Cloroquina/uso terapêutico , Humanos
15.
J Drug Target ; 29(9): 983-997, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33685319

RESUMO

Ultraviolet B (UVB) irradiation causes free radical production, increase inflammation and oxidative stress, thus, supporting the use of antioxidants by topical administration as therapeutic approaches. Quercetin (QC) is a flavonoid with antioxidant activity, however, high liposolubility makes it difficult to remain in the viable skin layer. Thus, this study evaluated whether microencapsulation of QC would enhance its activity in comparison with the same dose of free QC (non-active dose) and unloaded-microcapsules added in formulation for topical administration in a mouse model of UVB irradiation targeting the skin. Topical formulation containing Quercetin-loaded microcapsules (TFcQCMC) presents physico-chemical (colour, consistence, phase separation and pH) and functional antioxidant stability at 4 °C, room temperature and 40 °C for 6 months. TFcQCMC inhibited the UVB-triggered depletion of antioxidants observed by GSH (reduced glutathione), ability to reduce iron, ability to scavenge 2,2'-azinobis radical and catalase activity. TFcQCMC also inhibited markers of oxidation (lipid hydroperoxides and superoxide anion production). Concerning inflammation, TFcQCMC reduced the production of inflammatory cytokines, matrix metalloproteinase-9 activity, skin edoema, collagen fibre damage, myeloperoxidase activity/neutrophil recruitment, mast cell and sunburn cell counts. The pharmacological activity of TFcQCMC was not shared by the same pharmaceutical form containing the same dose of free QC or unloaded control microcapsules.


Assuntos
Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Cápsulas , Modelos Animais de Doenças , Feminino , Inflamação/etiologia , Masculino , Camundongos , Camundongos Pelados , Quercetina/administração & dosagem , Pele/patologia , Raios Ultravioleta/efeitos adversos
16.
Mater Sci Eng C Mater Biol Appl ; 122: 111778, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641881

RESUMO

The aim of this work was to develop a mucoadhesive iontophoretic patch for anesthetic delivery in the buccal epithelium. The patch was comprised of three different layers, namely i) drug release (0.64 cm2); ii) mucoadhesive (1.13 cm2); and iii) backing (1.13 cm2). Prilocaine and lidocaine hydrochlorides were used as model drugs (1:1 ratio, 12.5 mg per unit). An anode electrode (0.5 cm2 spiral silver wire) was placed in between the drug release and mucoadhesive/backing layers to enable iontophoresis. Surface microscopy; mechanical and in vitro mucoadhesive properties; drug release kinetics and mechanism; and drug permeation through the porcine esophageal epithelium were assessed. Topographic analysis evidenced differences in the physical structures for the several layers. All layers presented suitable handling properties i.e., flexibility, elasticity and resistance. Both the release and mucoadhesive layers presented features of a soft and tough material, while the backing layer matched the characteristics of a hard and brittle material. A synergy between the drug release and mucoadhesive layers on the mucoadhesive force and work of adhesion of the tri-layered patch was observed. Passive drug release of both drugs fitted to First-order, Hixson-Crowell and Weibull kinetic models; and the release mechanism was attributed to anomalous transport. Iontophoresis remarkably enhanced the permeation of both drugs, but mainly prilocaine through the mucosa as evidenced by the permeability coefficient parameter (3.0-fold). The amount of these amino amide salts retained in the mucosa were also equally enhanced (4.7-fold), while the application of a tiny constant electric current (1 mA·cm-2·h-1) significantly decreased the lag time for lidocaine permeation by about 45%. In view of possible in vitro / in vivo correlations, the buccal iontophoretic patch displays a promising strategy for needle-free and patient-friendly local anesthesia in dentistry.


Assuntos
Anestesia , Iontoforese , Animais , Sistemas de Liberação de Medicamentos , Humanos , Mucosa Bucal , Prilocaína , Suínos
17.
Rev. ciênc. farm. básica apl ; 42: 1-12, 20210101.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1177729

RESUMO

Objectives: To systematically evaluate the effects of hydroxypropyl methyl cellulose (HPMC) type (E5LV, E15LV, and K100LV); plasticizer type (glycerol and mannitol), plasticizer loading (0.12 and 0.24% w/w); and loading of prilocaine and lidocaine hydrochlorides combined at 1:1 ratio (0 and 47 mg/cm2) in the mechanical properties of buccal films. Methods: A quality by design (QbD) approach based on a full factorial design (3 x 23) and complementarily multivariate statistical tools i.e., principal component analysis (PCA), response surface methodology (RSM), and correlation matrix were used in this pursuit. The thickness, elongation at break, tensile strength, force at break, and Young`s modulus of the anesthetic buccal films obtained by solvent casting were assessed. Results: The QbD, PCA and RSM altogether demonstrated that all studied formulation variables, mainly the drug loading, affect the mechanical properties of the films at different significance levels. The multivariate analysis yielded the modelling of elongation at break, tensile strength, and force at break, which significantly correlated with each other. The drugs exerted a synergic plasticizing effect on the films, and the use of HPMC K100 LV (with greater hydroxypropyl substitution degree and viscosity) and mannitol favored their elasticity and resistance. Furthermore, the majority of the films fulfilled the requirements for buccal administration due to their softness and mechanical resistance. Conclusion: Mannitol is suitable plasticizer for manufacturing HPMC anesthetic buccal films with improved mechanical properties. These results are a step forward in the rational development of formulations for the replacement of needles in dentistry

18.
J Cosmet Dermatol ; 20(2): 664-676, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32573989

RESUMO

BACKGROUND: The use of antioxidants in applications for topical use seems promising, however, many studies must be performed to ensure processes and products that can effectively bring benefits to combat the action of free radicals in the skin. For topical antioxidants to be effective against free radicals from the skin, it is essential that the antioxidants compounds permeate the different skin layers, to reach deeper layers of the epidermis in active form and stay there for a sufficient time to cause the beneficial effects. AIM: This work aimed to evaluate the antioxidant action of formulations with phenolic compounds as well as to comprehend the skin retention profile of these actives. METHODS: The antioxidant potential was recognized with isolated phenolic acids (gallic, caffeic, and ferulic acid) or in combinations, using different in vitro methods (DPPH ABTS , FRAP , ß-carotene/linoleic acid system and ORAC). The skin retention study was performed through in vitro assay with Franz's diffusion cell associating, or not, the cathodic iontophoresis. RESULTS: Gallic acid showed the greatest antioxidant activity and was selected for a study of skin permeation following gel application to porcine skin, with or without cathodic iontophoresis. Gallic acid retention in deeper skin layers was promoted by iontophoresis, and increased skin antioxidant activity was detected after only 20 min of iontophoresis. The present study demonstrated the importance of polymeric gelling agents for optimizing the antioxidant activity. CONCLUSION: The cathodic iontophoresis represents a promising strategy to promote a target action of antioxidants in the skin.


Assuntos
Antioxidantes , Iontoforese , Administração Tópica , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Pele/metabolismo , Absorção Cutânea , Suínos
19.
Curr Med Chem ; 28(13): 2485-2520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32484100

RESUMO

Targeted therapy has been recently highlighted due to the reduction of side effects and improvement in overall efficacy and survival from different types of cancers. Considering the approval of many monoclonal antibodies in the last twenty years, cancer treatment can be accomplished by the combination of monoclonal antibodies and small molecule chemotherapeutics. Thus, strategies to combine both drugs in a single administration system are relevant in the clinic. In this context, two strategies are possible and will be further discussed in this review: antibody-drug conjugates (ADCs) and antibody-functionalized nanoparticles. First, it is important to better understand the possible molecular targets for cancer therapy, addressing different antigens that can selectively bind to antibodies. After selecting the best target, ADCs can be prepared by attaching a cytotoxic drug to an antibody able to target a cancer cell antigen. Briefly, an ADC will be formed by a monoclonal antibody (MAb), a cytotoxic molecule (cytotoxin) and a chemical linker. Usually, surface-exposed lysine or the thiol group of cysteine residues are used as anchor sites for linker-drug molecules. Another strategy that should be considered is antibody-functionalized nanoparticles. Basically, liposomes, polymeric and inorganic nanoparticles can be attached to specific antibodies for targeted therapy. Different conjugation strategies can be used, but nanoparticles coupling between maleimide and thiolated antibodies or activation with the addition of ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/ N-hydroxysuccinimide (NHS) (1:5) and further addition of the antibody are some of the most used strategies. Herein, molecular targets and conjugation strategies will be presented and discussed to better understand the in vitro and in vivo applications presented. Also, the clinical development of ADCs and antibody-conjugated nanoparticles are addressed in the clinical development section. Finally, due to the innovation related to the targeted therapy, it is convenient to analyze the impact on patenting and technology. Information related to the temporal evolution of the number of patents, distribution of patent holders and also the number of patents related to cancer types are presented and discussed. Thus, our aim is to provide an overview of the recent developments in immunoconjugates for cancer targeting and highlight the most important aspects for clinical relevance and innovation.


Assuntos
Antineoplásicos , Imunoconjugados , Nanopartículas , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico
20.
Sci Rep ; 10(1): 19285, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159142

RESUMO

Topical ophthalmic antibiotics show low efficacy due to the well-known physiological defense mechanisms of the eye, which prevents the penetration of exogenous substances. Here, we aimed to incorporate besifloxacin into liposomes containing amines as positively charged additives and to evaluate the influence of this charge on drug delivery in two situations: (i) iontophoretic and (ii) passive treatments. Hypothesis are (i) charge might enhance the electromigration component upon current application improving penetration efficiency for a burst drug delivery, and (ii) positive charge might prolong formulation residence time, hence drug penetration. Liposomes elaborated with phosphatidylcholine (LP PC) or phosphatidylcholine and spermine (LP PC: SPM) were stable under storage at 6 ºC for 30 days, showed mucoadhesive characteristics, and were non-irritant, according to HET-CAM tests. Electron paramagnetic resonance spectroscopy measurements showed that neither the drug nor spermine incorporations produced evident alterations in the fluidity of the liposome's membranes, which retained their structural stability even under iontophoretic conditions. Mean diameter and zeta potential were 177.2 ± 2.7 nm and - 5.7 ± 0.3 mV, respectively, for LP PC; and 175.4 ± 1.9 nm and + 19.5 ± 1.0 mV, respectively, for LP PC:SPM. The minimal inhibitory concentration (MIC) and the minimal bactericide concentration (MBC) of the liposomes for P. aeruginosa showed values lower than the commercial formulation (Besivance). Nevertheless, both formulations presented a similar increase in permeability upon the electric current application. Hence, liposome charge incorporation did not prove to be additionally advantageous for iontophoretic therapy. Passive drug penetration was evaluated through a novel in vitro ocular model that simulates the lacrimal flow and challenges the formulation resistance in the passive delivery situation. As expected, LP PC: SPM showed higher permeation than the control (Besivance). In conclusion, besifloxacin incorporation into positively charged liposomes improved passive topical delivery and can be a good strategy to improve topical ophthalmic treatments.


Assuntos
Azepinas , Olho/metabolismo , Fluoroquinolonas , Administração Oftálmica , Animais , Azepinas/química , Azepinas/farmacocinética , Azepinas/farmacologia , Fluoroquinolonas/química , Fluoroquinolonas/farmacocinética , Fluoroquinolonas/farmacologia , Lipossomos , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacocinética , Fosfatidilcolinas/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...