Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mamm Genome ; 31(3-4): 95-109, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32246189

RESUMO

The availability of an in vitro canine cell line would reduce the need for dogs for primary in vitro cell culture and reduce overall cost in pre-clinical studies. An immortalized canine muscle cell line, named Myok9, from primary myoblasts of a normal dog has been developed by the authors. Immortalization was performed by SV40 viral transfection of the large T antigen into the primary muscle cells. Proliferation assays, growth curves, quantitative PCR, western blotting, mass spectrometry, and light microscopy were performed to characterize the MyoK9 cell line at different stages of growth and differentiation. The expression of muscle-related genes was determined to assess myogenic origin. Myok9 cells expressed dystrophin and other muscle-specific proteins during differentiation, as detected with mass spectrometry and western blotting. Using the Myok9 cell line, new therapies before moving to pre-clinical studies to enhance the number and speed of analyses and reduce the cost of early experimentation can be tested now. This cell line will be made available to the research community to further evaluate potential therapeutics.


Assuntos
Mioblastos/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Cães , Músculos/citologia , Infecções por Polyomavirus/patologia , Vírus 40 dos Símios/patogenicidade , Transfecção/métodos
3.
Sports Med Health Sci ; 2(4): 195-201, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35782997

RESUMO

The process and regulation of cellular metabolism are extremely complex and accomplished through multiple signalling pathways that operate in parallel, and often experience significant overlap in upstream and downstream a signal transduction. Despite this complexity, single pathway or even single protein activations are commonly used to extrapolate broad characterizations of cellular metabolism. Furthermore, multiple routes for peptide-chain translation initiation exist, some of which may be either exclusive or overlapping depending on the state and environment of the cell. While it may be highly impractical to account for every aspect of metabolic regulation and permutation of mRNA translation, it is important to acknowledge that investigations relating to these pathways are often incomplete and not necessarily indicative of the overall metabolic status. This becomes urgent when considering the role that cellular anabolism plays in both healthy cellular functions and the aetiology of several disease's altered metabolisms. This review describes recent advances in the understanding of cellular metabolic regulation, with specific focus given to the complexity of 'downstream' mRNA translation initiation through both mTOR-dependent and mTOR-independent signallings.

4.
Yale J Biol Med ; 90(3): 351-360, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28955176

RESUMO

Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level. Our laboratory is particularly interested in muscle metabolism changes in dystrophin-deficient muscle. We identified several metabolic alterations, including myofiber type switching from fast (type II) to slow (type I), reduced glycolytic enzyme expression, reduced and morphologically abnormal mitochondria, and differential AMP-kinase phosphorylation (activation) between hypertrophied and wasted muscle. We hypothesize that muscle metabolism changes are, in part, responsible for phenotypic variability in GRMD. Pharmacological therapies aimed at modulating muscle metabolism can be tested in GRMD dogs for efficacy.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adolescente , Animais , Criança , Cães , Distrofina/genética , Distrofina/metabolismo , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Fenótipo
5.
Mamm Genome ; 28(3-4): 106-113, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28028563

RESUMO

Dystrophin is a key cytoskeletal protein coded by the Duchenne muscular dystrophy (DMD) gene located on the X-chromosome. Truncating mutations in the DMD gene cause loss of dystrophin and the classical DMD clinical syndrome. Spontaneous DMD gene mutations and associated phenotypes occur in several other species. The mdx mouse model and the golden retriever muscular dystrophy (GRMD) canine model have been used extensively to study DMD disease pathogenesis and show efficacy and side effects of putative treatments. Certain DMD gene mutations in high-risk, the so-called hot spot areas can be particularly helpful in modeling molecular therapies. Identification of specific mutations has been greatly enhanced by new genomic methods. Whole genome, next generation sequencing (WGS) has been recently used to define DMD patient mutations, but has not been used in dystrophic dogs. A dystrophin-deficient Cavalier King Charles Spaniel (CKCS) dog was evaluated at the functional, histopathological, biochemical, and molecular level. The affected dog's phenotype was compared to the previously reported canine dystrophinopathies. WGS was then used to detect a 7 base pair deletion in DMD exon 42 (c.6051-6057delTCTCAAT mRNA), predicting a frameshift in gene transcription and truncation of dystrophin protein translation. The deletion was confirmed with conventional PCR and Sanger sequencing. This mutation is in a secondary DMD gene hotspot area distinct from the one identified earlier at the 5' donor splice site of intron 50 in the CKCS breed.


Assuntos
Distrofina/genética , Distrofias Musculares/genética , Deleção de Sequência/genética , Sequenciamento Completo do Genoma/métodos , Processamento Alternativo/genética , Animais , Modelos Animais de Doenças , Cães , Éxons/genética , Humanos , Íntrons/genética , Camundongos , Camundongos Endogâmicos mdx/genética , Mutação , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...