Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37079012

RESUMO

Mexico is the fifth largest producer of papaya in the world with an estimated production of 1, 134, 753 metric tons per year (FAOSTAT 2022). In February 2022, in the center zone of Sinaloa State (Mexico), in a seedling-producing greenhouse, papaya seedlings were observed with an incidence (20%) of root and stem rot and necrotic tissue. Symptomatic tissues were collected from 10 papaya plants, which were cut into small pieces and surface sterilized sequentially with 70% alcohol for 20 s and 1% sodium hypochlorite for 2 min, dried, placed on potato dextrose agar (PDA), and incubated at 26°C in darkness for 5 days. Typical Fusarium spp. colonies were obtained from all root samples. Ten pure cultures were obtained by single-spore culturing and morphologically characterized on PDA and carnation leaf agar (CLA) media. On PDA, the colonies produced abundant white aerial mycelium, and the center of old cultures was yellow pigmentation (Leslie and Summerell 2006). From 10-day-old cultures grown on CLA medium, macroconidia were slightly curved, which showed zero to three septa, with some slightly sharp apices, and basal cells with notches, the measurements were from 22.53 to 48.94 x 6.9 to 13.73 µm (n= 50). The microconidia were presented in abundant chains of microconidia. The microconidia presented thin walls, oval and hyaline in shape, forming long chains, measuring 10.4 to 14.25 x 2.4 to 6.8 µm (n= 50). Chlamydospores were not observed. The translation elongation factor 1 alpha (EF1-α) gene (O'Donnell et al. 1998) was amplified by polymerase chain reaction and sequenced from isolate FVTPPYCULSIN (GenBank accession no. OM966892). Maximum likelihood analysis was carried out using the EF1-α sequence (OM966892) and other species from the genus Fusarium. Phylogenetic analysis revealed that the isolate was Fusarium verticillioides (100% bootstrap). Furthermore, the isolate FVTPPYCULSIN was 100 % similar with other reported Fusarium verticillioides sequence (GenBank accession nos. MN657268) (Dharanendra et al. 2019). Pathogenicity tests were performed on 60-day-old papaya plants (cultivar Maradol) grown on autoclaved sandy loam soil mix. Ten plants per isolate (n = 10) were inoculated by drenching with 20 ml of a conidial suspension (1 × 105 CFU/ml) of each isolate per plant. The suspension was obtained by collecting the spores of each isolate grown on PDA with 10 ml of an isotonic saline solution. Ten noninoculated plants served as controls. Plants were maintained for 60 days under greenhouse conditions (25 to 30°C). The assay was conducted twice. Root and stem rot similar to that observed on the infected plants in the greenhouse was observed on the papaya plants. No symptoms were observed on noninoculated control plants after 60 days. The pathogen was reisolated from the necrotic tissue from all inoculated plants and was identified again as Fusarium verticillioides by sequencing the partial EF1-α gene again and based on its morphological characteristics, genetic analysis, and pathogenicity test, fulfilling Koch's postulates. The molecular identification was confirmed via BLAST on the Fusarium ID and Fusarium MLST databases. The isolate FVTPPYCULSIN was deposited in the fungal collection of the Faculty of Agronomy of the Autonomous University of Sinaloa. To our knowledge, this is the first report of root and stem rot of papaya caused by F. verticillioides. Papaya is an important fruit crop in Mexico, and the occurrence of this disease needs to be taken into account in papaya production.

2.
Plant Dis ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973905

RESUMO

Strawberry (Fragaria × ananassa) is a fruit of economic importance for Mexico, occupying the third place in world production, with an approximate production of 861, 337 t (SIAP, 2021). In January 2021, in Culiacan, Sinaloa, Mexico (24°46'46″N; 107°27'04″ W), wilting symptoms (stunted growth, leaf yellowing and wilting, necrosis in vascular bundles, root rot and wilting) were observed on commercial strawberry crops, with an incidence of 5 to 10 %. Tissue samples from symptomatic roots were cut and disinfected with alcohol, sodium hypochlorite and sterile water, to later be plated on potato dextrose agar (PDA). Fifteen monosporic isolates were obtained by single-spore culturing (Hansen and Smith, 1932). Typical Fusarium spp. colonies were obtained from all root samples. On PDA the colonies were abundant with white aerial mycelium, hyphae were branched and septate, and light-yellow pigmentation was observed in the center of old cultures (Leslie and Summerell 2006). From 10-day-old cultures grown on carnation leaf agar medium, macroconidia were slightly curved, showing three marked septa, broad central cells, slightly tapered apices, foot-shaped basal cells and measured 59.6 - 73.4 (x̄ = 68.7) x 10.4 - 14.9 µm (x̄ = 13.6) (n = 40). The microconidia (n = 40) were thin-walled, hyaline, ovoid unicellular that measured 19.7 - 32.2 (x̄ = 26.6) x 8.8 - 11.8 µm (x̄ = 10.2). The translation elongation factor 1 alpha (EF1-α) gene (O'Donnell et al. 1998) was amplified by polymerase chain reaction and sequenced. Maximum likelihood analysis was carried out using the EF1-α sequence from the isolate FKTFRESCULSIN (GenBank accession no. OK491929) and other Neocosmospora and Fusarium species. Phylogenetic analysis revealed the isolate was Fusarium keratoplasticum (currently named Neocosmospora keratoplastica) belonging to the Fusarium solani species complex (FSSC). Pathogenicity tests were performed on strawberry plants (cultivar Camarosa) grown on autoclaved sandy loam soil mix. Twenty plants were inoculated by drenching with 20 ml of a conidial suspension (1 × 105 CFU/ml) in an isotonic saline solution of FKTFRESCULSIN grown on PDA. Ten uninoculated plants served as controls. Plants were maintained for 60 days under greenhouse conditions (25 to 30°C). The assay was conducted twice. Root and stem rot similar to that observed on the infected plants in the field was observed. No symptoms were observed on uninoculated control plants after 60 days. The pathogen was reisolated from necrotic tissue from all inoculated plants and identified as F. keratoplasticum by sequencing the partial EF1-α gene and based on its morphological characteristics, thus fulfilling Koch's postulates. To our knowledge, this is the first report of root rot and wilt of strawberry caused by F. keratoplasticum in Mexico; it also contributes knowledge to the scientific community, since there is little information about this pathogen causing damage to plants in the world. Strawberry is an important crop in Mexico, and the occurrence of this disease could threaten strawberry production.

3.
Plant Dis ; 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35771103

RESUMO

Mango (Mangifera indica L.) is the most economically important fruit in the tropical and subtropical regions of the world. Mexico is ranked the fourth largest mango producer worldwide with an approximate production of 2 396 675 t in 2019 (FAO 2020). Sinaloa is the principal mango production state in Mexico with 410,147 t in 2020 (SIAP 2021). Mango malformation disease (MMD) is one of the main limitations in the production of this crop worldwide, causing serious losses in yield. During December 2017 to April 2018, symptoms of MMD were observed in commercial mango in the municipality of El Rosario (Sinaloa, Mexico). These symptoms included malformed and compacted inflorescences, abnormal development of vegetative shoots with shortened internodes at an incidence of 25 %. Tissue from 15 symptomatic trees were superficially disinfested with 2% sodium hypochlorite and transferred to potato dextrose agar (PDA). Typical Fusarium spp. colonies were obtained from all samples. Fifteen pure cultures were obtained by single spore culturing. White to cream-colored aerial mycelia of typical Fusarium colonies were observed from all samples on PDA (Leslie and Summerell 2006). From 10-day-old cultures grown on carnation leaf agar medium, macroconidia (n = 50) were hyaline, relatively slender with a curve, 4 to 5 septate, and measured 39.5 to 76.8 x 5.7 to 9.5 µm. The microconidia (n = 50) were hyaline and pyriform, without septa, and measured 8.1 to 10.6 x 5.1 to 6.9 µm. Chlamydospores were observed. The EF1-α gene (O'Donnell et al. 1998) was amplified by PCR and sequenced from the isolates. The EF1-α sequence from one representative isolate (128FRSIN) was deposited in GenBank with the accession number MK932806. Maximum likelihood analysis was carried out using the representative EF1-α sequence for F. proliferatum (MK932806) and other Fusarium species. Phylogenetic analysis revealed the isolate most closely related was F. proliferatum (100% bootstrap). The molecular identification was also confirmed via BLAST on the Fusarium ID and Fusarium MLST databases. The pathogenicity tests were carried out on healthy three-month-old mango plants. Twenty plants and five shoots per plant were inoculated with 20 µl of the conidial suspension (1 x 106 conidia/ml) (Freeman et al. 1999). Twenty plants served as noninoculated controls. Plants were maintained for 365 days under greenhouse conditions (25 to 30°C). The assay was conducted twice. Symptoms of multiple vegetative shoots and shortened internodes were observed four months after inoculation on the infected plants with an average disease of 4.5 in the first trial and 4.4 in the second assay according to the disease severity scale outlined by Iqbal et al., (2006). No symptoms were observed on non inoculated control plants after 365 days. One isolate per plant was isolated again from the plants with malformation symptoms (n=20), and identified again as F. proliferatum, by morphological and molecular characteristics. F. proliferatum was identified as the causal agent of MMD in China by Zhan et al. (2010). To our knowledge, this is the first report of F. proliferatum causing MMD in Mexico. The development of management strategies to prevent crop loss is required in this important mango production area.

4.
Plant Dis ; 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35306843

RESUMO

Bean (Phaseolus vulgaris) is the second most important crop in Mexico after corn due to high consumption in all regions of the country. Sinaloa state is ranked second in Mexico, producing 140,830 tons in 2020 (SIAP, 2021). In October 2020, wilting symptoms (stunted growth, withered leaves, root rot and wilt) were observed on commercial bean crops in three fields in Culiacan, Sinaloa with an incidence of 3 to 5%. Tissue samples from symptomatic roots were plated on potato dextrose agar (PDA). Typical Fusarium spp. colonies were obtained from all root samples. Three pure cultures were obtained by single-spore culturing. On PDA, the colonies produced abundant white aerial mycelium, and the center of old cultures was light pink with yellow pigmentation (Leslie and Summerell 2006). Macroconidia, from 10-day-old cultures grown on carnation leaf agar, were slightly curved, with three septa, wide central cells, slightly sharp apices, basal foot-shaped cells, measuring 38.5  2.5 × 5.5  1.0 µm (n = 40). Microconidia were hyaline, ovoid, unicellular and measured 12.0  1.5 x 4.8  0.95 µm (n= 40). Chlamydospores were not observed. The translation elongation factor 1 alpha (EF1-α) gene (O'Donnell et al. 1998) was amplified by polymerase chain reaction and sequenced from isolate FNTL6P7CULSIN (GenBank accession no. OK491917). Maximum likelihood analysis was carried out using the EF1-α sequence (OK491917) and other species from the genus Fusarium. Phylogenetic analysis revealed the isolate was F. nygamai (100% bootstrap). Moreover, isolate FNTL6P7CULSIN was 99.7% (648 bp/649bp), and 99.9 % (648bp/650bp) similar, respectively, with other reported F. nygamai sequences (GenBank accession no. OL415419 and KR612341). Pathogenicity tests were performed on 20-day-old bean plants (cultivar Mayocoba) grown on autoclaved sandy loam soil mix. Twenty plants were inoculated by drenching with 20 ml of a conidial suspension (1 × 105 CFU/ml) in an isotonic saline solution of FNTL6P7CULSIN grown on PDA. Ten uninoculated plants served as controls. Plants were maintained for 60 days under greenhouse conditions (25 to 30°C). The assay was conducted twice. Root and stem rot similar to that observed on the infected plants in the field was observed. No symptoms were observed on uninoculated control plants after 60 days. The pathogen was reisolated from necrotic tissue from all inoculated plants and identified as F. nygamai by sequencing the partial EF1-α gene and based on its morphological characteristics, thus fulfilling Koch's postulates. Fusarium nygamai was associated with Fusarium foot rot of rice in Sardinia by Balmas et al., (2000). Also, this pathogen was reported by Leyva (2015) causing root rot in Maize in Sinaloa, Mexico. To our knowledge, this is the first report of root rot and wilt of bean caused by F. nygamai in Mexico. Bean is an important crop in Mexico, and the occurrence of this disease could threaten bean production.

5.
3 Biotech ; 9(7): 276, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31245240

RESUMO

Fusarium wilt is one of the main limiting factors for tomato production in Mexico. One thousand and fifty isolates were obtained from vascular tissues tomato plants showing wilt and yellowing symptoms in Sinaloa, Mexico. The pathogenic isolates were evaluated through phylogenetic analysis of the TEF-1α gene and ITS region, morphological markers and pathogenicity tests. Within the 15 pathogenic Fusarium isolates, 7 were identified as F. oxysporum and 8 as F. falciforme. Phylogenetic analysis of Fusarium oxysporum f. sp. lycopersici and Fusarium falciforme isolates confirmed that both populations are constituted by distinct phylogenetic lineages. The isolates showed differences in aggressiveness; F. falciforme was the most aggressive. Isolates of both complexes triggered similar aerial symptoms of yellowing and darkening of the vascular tissues in tomato plants. But only F. falciforme isolates triggered necrosis in the plant crowns. Morphological markers allowed differentiating isolates from distinct complexes but not differentiating between lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...