Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 84(10): 2883-2897, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31553062

RESUMO

Quercetin is a hydrophobic flavonoid with high antioxidant activity. However, for biological applications, the bioavailability of quercetin is low due to physiological barriers. For this reason, an alternative is the protection of quercetin in matrices of biopolymers as zein. The objective of this work was to prepare and characterize quercetin-loaded zein nanoparticles by electrospraying and its study of in vitro bioavailability. The physicochemical parameters such as viscosity, density, and electrical conductivity of zein solutions showed a dependence of the ethanol concentration. In addition, rheological parameters demonstrated that solutions of zein in aqueous ethanol present Newtonian behavior, rebounding in the formation of nanoparticles by electrospraying, providing spherical, homogeneous, and compact morphologies, mainly at a concentration of 80% (v/v) of ethanol and of 5% (w/v) of zein. The size and shape of quercetin-loaded zein nanoparticles were studied by transmission electron microscopy (TEM), observing that it was entrapped, distributed throughout the nanoparticle of zein. Analysis by Fourier transform-infrared (FT-IR) of zein nanoparticles loaded with quercetin revealed interactions via hydrogen bonds. The efficacy of zein nanoparticles to entrap quercetin was particularly high for all quercetin concentration evaluated in this work (87.9 ± 1.5% to 93.0 ± 2.6%). The in vitro gastrointestinal release of trapped quercetin after 240 min was 79.1%, while that for free quercetin was 99.2%. The in vitro bioavailability was higher for trapped quercetin (5.9%) compared to free quercetin (1.9%), than of gastrointestinal digestion. It is concluded, that the electrospraying technique made possible the obtention of quercitin-loaded zein nanoparticles increasing their bioavailability. PRACTICAL APPLICATION: This type of nanosystems can be used in the food and pharmaceutical industry. Quercetin-loaded zein nanoparticles for its improvement compared to free quercetin can be used to decrease the prevalence of chronic degenerative diseases by increasing of the bioavailability of quercetin in the bloodstream. Other application can be as an antioxidant system in functional foods or oils to increase shelf life.


Assuntos
Composição de Medicamentos/métodos , Quercetina/química , Zeína/química , Antioxidantes/química , Antioxidantes/metabolismo , Disponibilidade Biológica , Biopolímeros/química , Linhagem Celular , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Quercetina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Food Sci ; 84(4): 818-831, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30802954

RESUMO

Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid-loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3 ), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone-jet mode. The rheological properties and the Power Law model of the gallic acid-zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT-IR showed interaction in the gallic acid-loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid-loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors.


Assuntos
Técnicas Eletroquímicas , Ácido Gálico/química , Nanopartículas/química , Zeína/química , Antioxidantes , Biopolímeros/química , Ligação de Hidrogênio , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...