Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473776

RESUMO

Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.


Assuntos
Glioblastoma , Glioma , Hipertermia Induzida , Humanos , Fosfatidilinositol 3-Quinases , Terapia Combinada , Microambiente Tumoral
2.
Neurotherapeutics ; 21(1): e00301, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241160

RESUMO

Oxidative stress and neuroinflammation are major contributors to the pathophysiology of ALS. Nicotinamide riboside (a NAD+ precursor) and pterostilbene (a natural antioxidant) were efficacious in a human pilot study of ALS patients and in ALS SOD1G93A transgenic mice. Ibudilast targets different phosphodiesterases and the macrophage migration inhibitory factor, reduces neuroinflammation, and in early-phase studies improved survival and slowed progression in ALS patients. Using two ALS murine models (SOD1G93A, FUSR521C) the effects of nicotinamide riboside, pterostilbene, and ibudilast on disease onset, progression and survival were studied. In both models ibudilast enhanced the effects of nicotinamide riboside and pterostilbene on survival and neuromotor functions. The triple combination reduced microgliosis and astrogliosis, and the levels of different proinflammatory cytokines in the CSF. TNFα, IFNγ and IL1ß increased H2O2 and NO generation by motor neurons, astrocytes, microglia and endothelial cells isolated from ALS mice. Nicotinamide riboside and pterostilbene decreased H2O2 and NO generation in all these cells. Ibudilast specifically decreased TNFα levels and H2O2 generation by microglia and endothelial cells. Unexpectedly, pathophysiological concentrations of H2O2 or NO caused minimal motor neuron cytotoxicity. H2O2-induced cytotoxicity was increased by NO via a trace metal-dependent formation of potent oxidants (i.e. OH and -OONO radicals). In conclusion, our results show that the combination of nicotinamide riboside, pterostilbene and ibudilast improve neuromotor functions and survival in ALS murine models. Studies on the underlying mechanisms show that motor neuron protection involves the decrease of oxidative and nitrosative stress, the combination of which is highly damaging to motor neurons.


Assuntos
Esclerose Lateral Amiotrófica , Indolizinas , Niacinamida/análogos & derivados , Pirazóis , Compostos de Piridínio , Camundongos , Animais , Humanos , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/tratamento farmacológico , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa , Células Endoteliais , Peróxido de Hidrogênio , Projetos Piloto , Neurônios Motores , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Camundongos Transgênicos , Modelos Animais de Doenças , Superóxido Dismutase , Medula Espinal
3.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444524

RESUMO

At present, the applications and efficacy of non-ionizing radiations (NIR) in oncotherapy are limited. In terms of potential combinations, the use of biocompatible magnetic nanoparticles as heat mediators has been extensively investigated. Nevertheless, developing more efficient heat nanomediators that may exhibit high specific absorption rates is still an unsolved problem. Our aim was to investigate if externally applied magnetic fields and a heat-inducing NIR affect tumor cell viability. To this end, under in vitro conditions, different human cancer cells (A2058 melanoma, AsPC1 pancreas carcinoma, MDA-MB-231 breast carcinoma) were treated with the combination of electromagnetic fields (EMFs, using solenoids) and hyperthermia (HT, using a thermostated bath). The effect of NIR was also studied in combination with standard chemotherapy and targeted therapy. An experimental device combining EMFs and high-intensity focused ultrasounds (HIFU)-induced HT was tested in vivo. EMFs (25 µT, 4 h) or HT (52 °C, 40 min) showed a limited effect on cancer cell viability in vitro. However, their combination decreased viability to approximately 16%, 50%, and 21% of control values in A2058, AsPC1, and MDA-MB-231 cells, respectively. Increased lysosomal permeability, release of cathepsins into the cytosol, and mitochondria-dependent activation of cell death are the underlying mechanisms. Cancer cells could be completely eliminated by combining EMFs, HT, and standard chemotherapy or EMFs, HT, and anti-Hsp70-targeted therapy. As a proof of concept, in vivo experiments performed in AsPC1 xenografts showed that a combination of EMFs, HIFU-induced HT, standard chemotherapy, and a lysosomal permeabilizer induces a complete cancer regression.

4.
Cells ; 12(3)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36766760

RESUMO

Circulating glucocorticoids increase during stress. Chronic stress, characterized by a sustained increase in serum levels of cortisol, has been associated in different cases with an increased risk of cancer and a worse prognosis. Glucocorticoids can promote gluconeogenesis, mobilization of amino acids, fat breakdown, and impair the body's immune response. Therefore, conditions that may favor cancer growth and the acquisition of radio- and chemo-resistance. We found that glucocorticoid receptor knockdown diminishes the antioxidant protection of murine B16-F10 (highly metastatic) melanoma cells, thus leading to a drastic decrease in their survival during interaction with the vascular endothelium. The BRAFV600E mutation is the most commonly observed in melanoma patients. Recent studies revealed that VMF/PLX40-32 (vemurafenib, a selective inhibitor of mutant BRAFV600E) increases mitochondrial respiration and reactive oxygen species (ROS) production in BRAFV600E human melanoma cell lines. Early-stage cancer cells lacking Nrf2 generate high ROS levels and exhibit a senescence-like growth arrest. Thus, it is likely that a glucocorticoid receptor antagonist (RU486) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated melanoma. In fact, during early progression of skin melanoma metastases, RU486 and VMF induced metastases regression. However, treatment at an advanced stage of growth found resistance to RU486 and VMF. This resistance was mechanistically linked to overexpression of proteins of the Bcl-2 family (Bcl-xL and Mcl-1 in different human models). Moreover, melanoma resistance was decreased if AKT and NF-κB signaling pathways were blocked. These findings highlight mechanisms by which metastatic melanoma cells adapt to survive and could help in the development of most effective therapeutic strategies.


Assuntos
Antioxidantes , Melanoma , Animais , Humanos , Camundongos , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Melanoma/patologia , Mifepristona/farmacologia , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas B-raf/genética , Espécies Reativas de Oxigênio/uso terapêutico , Receptores de Glucocorticoides
5.
J Adv Res ; 45: 73-86, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35599107

RESUMO

INTRODUCTION: Effective agents that could confer long-term protection against ionizing radiation in vivo would have applications in medicine, biotechnology, and in air and space travel. However, at present, drugs that can effectively protect against lethal ionizing radiations are still an unmet need. OBJECTIVE: To investigate if combinations of natural polyphenols, known for their antioxidant potential, could protect against ionizing radiations. METHODS: Plant-derived polyphenols were screened for their potential ability to confer radioprotection to mice given a lethal whole-body γ radiation (137Cs) dose expected to kill 50% of the animals in 30 days. Telomere and centromere staining, Q-FISH and comet assays were used to investigate chromosomal aberration, micronuclei formation and DNA breaks. Molecular oxidations were investigated by enzyme immunoassays and UPLC-MS/MS. RT-PCR, western blotting and siRNA-induced gene silencing were used to study signaling mechanisms and molecular interactions. RESULTS: The combination of pterostilbene (PT) and silibinin (SIL) was the most effective against γ-irradiation, resulting in 100% of the mice surviving at 30 days and 20% survival at one year. Treatment post γ-irradiation with two potential radiomitigators nicotinamide riboside (NR, a vitamin B3 derivative), and/or fibroblast-stimulating lipoprotein 1 (FSL1, a toll-like receptor 2/6 agonist), did not extend survival. However, the combination of PT, SIL, NR and FSL1 achieved a 90% survival one year post γ-irradiation. The mechanism involves induction of the Nrf2-dependent cellular antioxidant defense, reduction of NF-kB signaling, upregulation of the PGC-1α/sirtuins 1 and 3 axis, PARP1-dependent DNA repair, and stimulation of hematopoietic cell recovery. The pathway linking Nrf2, sirtuin 3 and SOD2 is key to radioprotection. Importantly, this combination did not interfere with X-ray mediated killing of different tumor cells in vivo. CONCLUSION: The combination of the radioprotectors PT and SIL with the radiomitigators NR and FSL1 confer effective, long-term protection against γ radiation in vivo. This strategy is potentially capable of protecting mammals against ionizing radiations.


Assuntos
NAD , Protetores contra Radiação , Camundongos , Animais , Raios gama , Antioxidantes , Receptor 2 Toll-Like/agonistas , Lipopeptídeos , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Polifenóis/farmacologia , Fator 2 Relacionado a NF-E2 , Cromatografia Líquida , Ligantes , Espectrometria de Massas em Tandem , Mamíferos
6.
Cancers (Basel) ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892873

RESUMO

N-acetylcysteine (NAC) is a direct Cys donor and a promoter of glutathione (GSH) synthesis. GSH regulates melanoma growth and NAC has been suggested to increase melanoma metastases in mice. We found that high therapeutic doses of NAC do not increase the growth of melanoma xenografts, but can cause metastatic spread and distant metastases. Nevertheless, this is not due to an antioxidant effect since NAC, in fact, increases the generation of reactive oxygen species in the growing metastatic melanoma. Trolox, an antioxidant vitamin E derivative, administered in vivo, decreased metastatic growth. Metastatic cells isolated from NAC-treated mice showed an increase in the nuclear translocation of Nrf2, as compared to controls. Nrf2, a master regulator of the antioxidant response, controls the expression of different antioxidant enzymes and of the γ-glutamylcysteine ligase (the rate-limiting step in GSH synthesis). Cystine uptake through the xCT cystine-glutamate antiporter (generating intracellular Cys) and the γ-glutamylcysteine ligase activity are key to control metastatic growth. This is associated to an increase in the utilization of L-Gln by the metastatic cells, another metastases promoter. Our results demonstrate the potential of NAC as an inducer of melanoma metastases spread, and suggest that caution should be taken when administering GSH promoters to cancer patients.

7.
Antioxidants (Basel) ; 10(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943110

RESUMO

Oxidative stress has been proposed as a major mechanism of damage to motor neurons associated with the progression of amyotrophic lateral sclerosis (ALS). Astrocytes are the most numerous glial cells in the central nervous system and, under physiological conditions, protect neurons from oxidative damage. However, it is uncertain how their reactive phenotype may affect motor neurons during ALS progression. In two different ALS mouse models (SOD1G93A and FUS-R521C), we found that increased levels of proinflammatory interleukin 6 facilitate glutathione (GSH) release from the liver to blood circulation, which can reach the astrocytes and be channeled towards motor neurons as a mechanism of antioxidant protection. Nevertheless, although ALS progression is associated with an increase in GSH efflux from astrocytes, generation of reactive oxygen species also increases, suggesting that as the disease progresses, astrocyte-derived oxidative stress could be key to motor-neuron damage.

8.
Biomedicines ; 9(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34440204

RESUMO

Charcot first described amyotrophic lateral sclerosis (ALS) between 1865 and 1874 as a sporadic adult disease resulting from the idiopathic progressive degeneration of the motor neuronal system, resulting in rapid, progressive, and generalized muscle weakness and atrophy. There is no cure for ALS and no proven therapy to prevent it or reverse its course. There are two drugs specifically approved for the treatment of ALS, riluzol and edaravone, and many others have already been tested or are following clinical trials. However, at the present moment, we still cannot glimpse a true breakthrough in the treatment of this devastating disease. Nevertheless, our understanding of the pathophysiology of ALS is constantly growing. Based on this background, we know that oxidative stress, alterations in the NAD+-dependent metabolism and redox status, and abnormal mitochondrial dynamics and function in the motor neurons are at the core of the problem. Thus, different antioxidant molecules or NAD+ generators have been proposed for the therapy of ALS. This review analyzes these options not only in light of their use as individual molecules, but with special emphasis on their potential association, and even as part of broader combined multi-therapies.

9.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198557

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease of the motor system. It is characterized by the degeneration of both upper and lower motor neurons, which leads to muscle weakness and paralysis. ALS is incurable and has a bleak prognosis, with median survival of 3-5 years after the initial symptomatology. In ALS, motor neurons gradually degenerate and die. Many features of mitochondrial dysfunction are manifested in neurodegenerative diseases, including ALS. Mitochondria have shown to be an early target in ALS pathophysiology and contribute to disease progression. Disruption of their axonal transport, excessive generation of reactive oxygen species, disruption of the mitochondrial structure, dynamics, mitophagy, energy production, calcium buffering and apoptotic triggering have all been directly involved in disease pathogenesis and extensively reported in ALS patients and animal model systems. Alterations in energy production by motor neurons, which severely limit their survival capacity, are tightly linked to the redox status and mitochondria. The present review focuses on this link. Placing oxidative stress as a main pathophysiological mechanism, the molecular interactions and metabolic flows involved are analyzed. This leads to discussing potential therapeutic approaches targeting mitochondrial biology to slow disease progression.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Metabolismo Energético , Mitocôndrias/metabolismo , Estresse Oxidativo , Animais , Humanos , Neurônios Motores/patologia , Oxirredução
10.
Antioxidants (Basel) ; 10(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801098

RESUMO

Natural polyphenols are organic chemicals which contain phenol units in their structures and possess antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Pterostilbene (3,5-dimethoxy-4'-hydroxystilbene; PT) is a phytoalexin originally isolated from the heartwood of red sandalwood. As recently reported by our group, PT was shown to be effective in the treatment of melanoma. Counterintuitively, PT is not effective (cytotoxic) against melanoma in vitro, and only under in vivo conditions does PT display its anticancer activity. This study elucidated that PT can be effective against melanoma through the inhibition of adrenocorticotropic hormone production in the brain of a mouse, which weakens the Nrf2-dependent antioxidant defenses of melanoma and also pancreatic cancers. This results in both the inhibition of tumor growth and sensitization of the tumor to oxidative stress. Moreover, PT can promote cancer cell death via a mechanism involving lysosomal membrane permeabilization. Different grades of susceptibility were observed among the different cancer cells depending on their lysosomal heat shock protein 70 content, a known stabilizer of lysosomal membranes. In addition, the safety of PT administered i.v. has been evaluated in mice. PT was found to be pharmacologically safe because it showed no organ-specific or systemic toxicity (including tissue histopathologic examination and regular hematology and clinical chemistry data) even when administered i.v. at a high dose (30 mg/kg per day × 23 days). Moreover, new pharmacological advances are being developed to increase its bioavailability and, thereby, its bioefficacy. Therefore, although applications of PT in cancer therapy are just beginning to be explored, it represents a potential (and effective) adjuvant/sensitizing therapy which may improve the results of various oncotherapies. The aim of this review is to present and discuss the results that in our opinion best support the usefulness of PT in cancer therapy, making special emphasis on the in vivo evidence.

11.
Semin Cancer Biol ; 71: 109-121, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32428715

RESUMO

Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascularization. Surviving melanoma cells attached to the endothelium of pre-capillary arterioles or sinusoids may follow two mechanisms of extravasation: a) migration through vessel fenestrae or b) intravascular proliferation followed by vessel rupture and microinflammation. Invading melanoma cells first form micrometastases within the normal lobular hepatic architecture via a mechanism regulated by cross-talk with the stroma and multiple microenvironment-related molecular signals. In this review special emphasis is placed on neuroendocrine (systemic) mechanisms as potential promoters of liver metastatic growth. Growing metastatic cells undergo functional and metabolic changes that increase their capacity to withstand oxidative/nitrosative stress, which favors their survival. This adaptive process also involves upregulation of Bcl-2-related antideath mechanisms, which seems to lead to the generation of more resistant cell subclones.


Assuntos
Carcinoma Neuroendócrino/secundário , Endotélio/patologia , Neoplasias Hepáticas/secundário , Melanoma/patologia , Estresse Oxidativo , Microambiente Tumoral , Animais , Carcinoma Neuroendócrino/irrigação sanguínea , Sobrevivência Celular , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Oxirredução
12.
Mol Neurobiol ; 58(4): 1345-1371, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33174130

RESUMO

Oxidative stress-induced damage is a major mechanism in the pathophysiology of amyotrophic lateral sclerosis (ALS). A recent human clinical trial showed that the combination of nicotinamide riboside (NR) and pterostilbene (PT), molecules with potential to interfere in that mechanism, was efficacious in ALS patients. We examined the effect of these molecules in SOD1G93A transgenic mice, a well-stablished model of ALS. Assessment of neuromotor activity and coordination was correlated with histopathology, and measurement of proinflammatory cytokines in the cerebrospinal fluid. Cell death, Nrf2- and redox-dependent enzymes and metabolites, and sirtuin activities were studied in isolated motor neurons. NR and PT increased survival and ameliorated ALS-associated loss of neuromotor functions in SOD1G93A transgenic mice. NR and PT also decreased the microgliosis and astrogliosis associated with ALS progression. Increased levels of proinflammatory cytokines were observed in the cerebrospinal fluid of mice and humans with ALS. NR and PT ameliorated TNFα-induced oxidative stress and motor neuron death in vitro. Our results support the involvement of oxidative stress, specific Nrf2-dependent antioxidant defenses, and sirtuins in the pathophysiology of ALS. NR and PT interfere with the mechanisms leading to the release of proapoptotic molecular signals by mitochondria, and also promote mitophagy.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Mutação/genética , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacologia , Estilbenos/farmacologia , Superóxido Dismutase-1/genética , Acetilcisteína/farmacologia , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Citocinas/líquido cefalorraquidiano , Feminino , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , NAD/sangue , Fator 2 Relacionado a NF-E2/metabolismo , Degeneração Neural/patologia , Niacinamida/farmacologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Medula Espinal/patologia , Estilbenos/sangue , Análise de Sobrevida
13.
Antioxidants (Basel) ; 9(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971909

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron (MN) disease. Its primary cause remains elusive, although a combination of different causal factors cannot be ruled out. There is no cure, and prognosis is poor. Most patients with ALS die due to disease-related complications, such as respiratory failure, within three years of diagnosis. While the underlying mechanisms are unclear, different cell types (microglia, astrocytes, macrophages and T cell subsets) appear to play key roles in the pathophysiology of the disease. Neuroinflammation and oxidative stress pave the way leading to neurodegeneration and MN death. ALS-associated mitochondrial dysfunction occurs at different levels, and these organelles are involved in the mechanism of MN death. Molecular and cellular interactions are presented here as a sequential cascade of events. Based on our present knowledge, the discussion leads to the idea that feasible therapeutic strategies should focus in interfering with the pathophysiology of the disease at different steps.

14.
Am J Cancer Res ; 9(12): 2580-2598, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31911848

RESUMO

Clinical applications of glucocorticoids (GC) in Oncology are dependent on their pro-apoptotic action to treat lymphoproliferative cancers, and to alleviate side effects induced by chemotherapy and/or radiotherapy. However, the mechanism(s) by which GC may also promote tumor progression remains unclear. GC receptor (GR) knockdown decreases the antioxidant protection of highly metastatic B16-F10 melanoma cells. We hypothesize that a GR antagonist (RU486, mifepristone) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated metastatic melanoma. In vivo formed spontaneous skin tumors were reinoculated into nude mice to expand the metastases of different human BRAFV600E melanoma cells. The GR content of melanoma cell lines was measured by [3H]-labeled ligand binding assay. Nuclear Nrf2 and its transcription activity was investigated by RT-PCR, western blotting, and by measuring Nrf2- and redox state-related enzyme activities and metabolites. GR knockdown was achieved using lentivirus, and GR overexpression by transfection with the NR3C1 plasmid. shRNA-induced selective Bcl-xL, Mcl-1, AKT1 or NF-κB/p65 depletion was used to test the efficacy of vemurafenib (VMF) and RU486 against BRAFV600E-mutated metastatic melanoma. During early progression of skin melanoma metastases, RU486 and VMF induced a drastic metastases regression. However, treatment at an advanced stage of growth demonstrated the development of resistance to RU486 and VMF. This resistance was mechanistically linked to overexpression of specific proteins of the Bcl-2 family (Bcl-xL and Mcl-1 in our experimental models). We found that melanoma resistance is decreased if AKT and NF-κB signaling pathways are blocked. Our results highlight mechanisms by which metastatic melanoma cells adapt to survive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...