Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254102

RESUMO

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Assuntos
Benzamidas , Carcinoma Epitelial do Ovário , Adesão Celular , Histona Desacetilase 1 , Histona Desacetilase 2 , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Feminino , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Anticorpos Monoclonais , Carcinoma Epitelial do Ovário/metabolismo , Epitélio , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilase 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Proteômica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilase 2/metabolismo , Adesão Celular/genética
2.
Front Cell Infect Microbiol ; 13: 1285193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094743

RESUMO

Bacterial infections and the concurrent inflammation have been associated with increased long-term cardiovascular (CV) risk. In patients receiving peritoneal dialysis (PD), bacterial peritonitis is a common occurrence, and each episode further increases late CV mortality risk. However, the underlying mechanism(s) remains to be elucidated before safe and efficient anti-inflammatory interventions can be developed. Damage-Associated Molecular Patterns (DAMPs) have been shown to contribute to the acute inflammatory response to infections, but a potential role for DAMPs in mediating long-term vascular inflammation and CV risk following infection resolution in PD, has not been investigated. We found that bacterial peritonitis in mice that resolved within 24h led to CV disease-promoting systemic and vascular immune-mediated inflammatory responses that were maintained up to 28 days. These included higher blood proportions of inflammatory leukocytes displaying increased adhesion molecule expression, higher plasma cytokines levels, and increased aortic inflammatory and atherosclerosis-associated gene expression. These effects were also observed in infected nephropathic mice and amplified in mice routinely exposed to PD fluids. A peritonitis episode resulted in elevated plasma levels of the DAMP Calprotectin, both in PD patients and mice, here the increase was maintained up to 28 days. In vitro, the ability of culture supernatants from infected cells to promote key inflammatory and atherosclerosis-associated cellular responses, such as monocyte chemotaxis, and foam cell formation, was Calprotectin-dependent. In vivo, Calprotectin blockade robustly inhibited the short and long-term peripheral and vascular consequences of peritonitis, thereby demonstrating that targeting of the DAMP Calprotectin is a promising therapeutic strategy to reduce the long-lasting vascular inflammatory aftermath of an infection, notably PD-associated peritonitis, ultimately lowering CV risk.


Assuntos
Aterosclerose , Infecções Bacterianas , Diálise Peritoneal , Peritonite , Humanos , Camundongos , Animais , Diálise Peritoneal/efeitos adversos , Diálise Peritoneal/métodos , Inflamação/complicações , Infecções Bacterianas/complicações , Aterosclerose/complicações
3.
J Pathol ; 261(2): 238-251, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555348

RESUMO

Ovarian carcinomatosis is characterized by the accumulation of carcinoma-associated mesothelial cells (CAMs) in the peritoneal stroma and mainly originates through a mesothelial-to-mesenchymal transition (MMT) process. MMT has been proposed as a therapeutic target for peritoneal metastasis. Most ovarian cancer (OC) patients present at diagnosis with peritoneal seeding, which makes tumor progression control difficult by MMT modulation. An alternative approach is to use antibody-drug conjugates (ADCs) targeted directly to attack CAMs. This strategy could represent the cornerstone of precision-based medicine for peritoneal carcinomatosis. Here, we performed complete transcriptome analyses of ascitic fluid-isolated CAMs in advanced OC patients with primary-, high-, and low-grade, serous subtypes and following neoadjuvant chemotherapy. Our findings suggest that both cancer biological aggressiveness and chemotherapy-induced tumor mass reduction reflect the MMT-associated changes that take place in the tumor surrounding microenvironment. Accordingly, MMT-related genes, including fibroblast activation protein (FAP), mannose receptor C type 2 (MRC2), interleukin-11 receptor alpha (IL11RA), myristoylated alanine-rich C-kinase substrate (MARCKS), and sulfatase-1 (SULF1), were identified as specific actionable targets in CAMs of OC patients, which is a crucial step in the de novo design of ADCs. These cell surface target receptors were also validated in peritoneal CAMs of colorectal cancer peritoneal implants, indicating that ADC-based treatment could extend to other abdominal tumors that show peritoneal colonization. As proof of concept, a FAP-targeted ADC reduced tumor growth in an OC xenograft mouse model with peritoneal metastasis-associated fibroblasts. In summary, we propose MMT as a potential source of ADC-based therapeutic targets for peritoneal carcinomatosis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma , Imunoconjugados , Neoplasias Ovarianas , Neoplasias Peritoneais , Feminino , Humanos , Camundongos , Animais , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Imunoconjugados/farmacologia , Imunoconjugados/metabolismo , Carcinoma/patologia , Peritônio/metabolismo , Fibroblastos/patologia , Modelos Animais de Doenças , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982834

RESUMO

Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.


Assuntos
COVID-19 , Falência Renal Crônica , Peritonite , Insuficiência Renal Crônica , Humanos , Peritônio , Diálise Renal/efeitos adversos , COVID-19/complicações , Soluções para Diálise/efeitos adversos , Peritonite/induzido quimicamente , Insuficiência Renal Crônica/complicações , Inflamação/complicações , Falência Renal Crônica/terapia , Falência Renal Crônica/complicações , Imunidade
5.
Front Pharmacol ; 13: 868374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052133

RESUMO

Background: Peritoneal dialysis (PD) is a renal replacement technique that requires repeated exposure of the peritoneum to hyperosmolar PD fluids (PDFs). Unfortunately, it promotes alterations of the peritoneal membrane (PM) that affects its functionality, including mesothelial-mesenchymal transition (MMT) of mesothelial cells (MCs), inflammation, angiogenesis, and fibrosis. Glucose is the most used osmotic agent, but it is known to be at least partially responsible, together with its degradation products (GDP), for those changes. Therefore, there is a need for more biocompatible osmotic agents to better maintain the PM. Herein we evaluated the biocompatibility of Steviol glycosides (SG)-based fluids. Methods: The ultrafiltration and transport capacities of SG-containing and glucose-based fluids were analyzed using artificial membranes and an in vivo mouse model, respectively. To investigate the biocompatibility of the fluids, Met-5A and human omental peritoneal MCs (HOMCs) were exposed in vitro to different types of glucose-based PDFs (conventional 4.25% glucose solution with high-GDP level and biocompatible 2.3% glucose solution with low-GDP level), SG-based fluids or treated with TGF-ß1. Mice submitted to surgery of intraperitoneal catheter insertion were treated for 40 days with SG- or glucose-based fluids. Peritoneal tissues were collected to determine thickness, MMT, angiogenesis, as well as peritoneal washings to analyze inflammation. Results: Dialysis membrane experiments demonstrated that SG-based fluids at 1.5%, 1%, and 0.75% had a similar trend in weight gain, based on curve slope, as glucose-based fluids. Analyzing transport capacity in vivo, 1% and 0.75% SG-based fluid-exposed nephrectomized mice extracted a similar amount of urea as the glucose 2.3% group. In vitro, PDF with high-glucose (4.25%) and high-GDP content induced mesenchymal markers and angiogenic factors (Snail1, Fibronectin, VEGF-A, FGF-2) and downregulates the epithelial marker E-Cadherin. In contrast, exposition to low-glucose-based fluids with low-GDP content or SG-based fluids showed higher viability and had less MMT. In vivo, SG-based fluids preserved MC monolayer, induced less PM thickness, angiogenesis, leukocyte infiltration, inflammatory cytokines release, and MMT compared with glucose-based fluids. Conclusion: SG showed better biocompatibility as an osmotic agent than glucose in vitro and in vivo, therefore, it could alternatively substitute glucose in PDF.

6.
Front Cell Dev Biol ; 9: 764375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926453

RESUMO

Transcoelomic spread of serous ovarian cancer (SOC) results from the cooperative interactions between cancer and host components. Tumor-derived factors might allow the conversion of mesothelial cells (MCs) into tumor-associated MCs, providing a favorable environment for SOC cell dissemination. However, factors and molecular mechanisms involved in this process are largely unexplored. Here we investigated the tumor-related endothelin-1 (ET-1) as an inducer of changes in MCs supporting SOC progression. Here, we report a significant production of ET-1 from MCs associated with the expression of its cognate receptors, ETA and ETB, along with the protein ß-arrestin1. ET-1 triggers MC proliferation via ß-arrestin1-dependent MAPK and NF-kB pathways and increases the release of cancer-related factors. The ETA/ETB receptor activation supports the genetic reprogramming of mesothelial-to-mesenchymal transition (MMT), with upregulation of mesenchymal markers, as fibronectin, α-SMA, N-cadherin and vimentin, NF-kB-dependent Snail transcriptional activity and downregulation of E-cadherin and ZO-1, allowing to enhanced MC migration and invasion, and SOC transmesothelial migration. These effects are impaired by either blockade of ETAR and ETBR or by ß-arrestin1 silencing. Notably, in peritoneal metastases both ETAR and ETBR are co-expressed with MMT markers compared to normal control peritoneum. Collectively, our report shows that the ET-1 axis may contribute to the early stage of SOC progression by modulating MC pro-metastatic behaviour via MMT.

7.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768926

RESUMO

Most patients with ovarian cancer (OvCA) present peritoneal disseminated disease at the time of diagnosis. During peritoneal metastasis, cancer cells detach from the primary tumor and disseminate through the intraperitoneal fluid. The peritoneal mesothelial cell (PMC) monolayer that lines the abdominal cavity is the first barrier encountered by OvCA cells. Subsequent progression of tumors through the peritoneum leads to the accumulation into the peritoneal stroma of a sizeable population of carcinoma-associated fibroblasts (CAFs), which is mainly originated from a mesothelial-to-mesenchymal transition (MMT) process. A common characteristic of OvCA patients is the intraperitoneal accumulation of ascitic fluid, which is composed of cytokines, chemokines, growth factors, miRNAs, and proteins contained in exosomes, as well as tumor and mesothelial suspended cells, among other components that vary in proportion between patients. Exosomes are small extracellular vesicles that have been shown to mediate peritoneal metastasis by educating a pre-metastatic niche, promoting the accumulation of CAFs via MMT, and inducing tumor growth and chemoresistance. This review summarizes and discusses the pivotal role of exosomes and MMT as mediators of OvCA peritoneal colonization and as emerging diagnostic and therapeutic targets.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Transição Epitelial-Mesenquimal/fisiologia , Exossomos/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Líquido Ascítico/química , Líquido Ascítico/citologia , Linhagem Celular Tumoral , Citocinas/análise , Epitélio/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/análise , Peritônio/patologia
8.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576100

RESUMO

Approximately 25% of colorectal cancer (CRC) patients develop peritoneal metastasis, a condition associated with a bleak prognosis. The CRC peritoneal dissemination cascade involves the shedding of cancer cells from the primary tumor, their transport through the peritoneal cavity, their adhesion to the peritoneal mesothelial cells (PMCs) that line all peritoneal organs, and invasion of cancer cells through this mesothelial cell barrier and underlying stroma to establish new metastatic foci. Exosomes produced by cancer cells have been shown to influence many processes related to cancer progression and metastasis. In epithelial ovarian cancer these extracellular vesicles (EVs) have been shown to favor different steps of the peritoneal dissemination cascade by changing the functional phenotype of cancer cells and PMCs. Little is currently known, however, about the roles played by exosomes in the pathogenesis and peritoneal metastasis cascade of CRC and especially about the molecules that mediate their interaction and uptake by target PMCs and tumor cells. We isolated exosomes by size-exclusion chromatography from CRC cells and performed cell-adhesion assays to immobilized exosomes in the presence of blocking antibodies against surface proteins and measured the uptake of fluorescently-labelled exosomes. We report here that the interaction between integrin α5ß1 on CRC cells (and PMCs) and its ligand ADAM17 on exosomes mediated the binding and uptake of CRC-derived exosomes. Furthermore, this process was negatively regulated by the expression of tetraspanin CD9 on exosomes.


Assuntos
Proteína ADAM17/metabolismo , Neoplasias Colorretais/metabolismo , Exossomos/metabolismo , Integrina alfa5beta1/metabolismo , Adenocarcinoma/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Epitélio/patologia , Exossomos/ultraestrutura , Fibronectinas/metabolismo , Humanos , Peritônio/patologia , Tetraspanina 29/metabolismo
9.
Sci Transl Med ; 13(608)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433641

RESUMO

Life-saving renal replacement therapy by peritoneal dialysis (PD) is limited in use and duration by progressive impairment of peritoneal membrane integrity and homeostasis. Preservation of peritoneal membrane integrity during chronic PD remains an urgent but long unmet medical need. PD therapy failure results from peritoneal fibrosis and angiogenesis caused by hypertonic PD fluid (PDF)-induced mesothelial cytotoxicity. However, the pathophysiological mechanisms involved are incompletely understood, limiting identification of therapeutic targets. We report that addition of lithium chloride (LiCl) to PDF is a translatable intervention to counteract PDF-induced mesothelial cell death, peritoneal membrane fibrosis, and angiogenesis. LiCl improved mesothelial cell survival in a dose-dependent manner. Combined transcriptomic and proteomic characterization of icodextrin-based PDF-induced mesothelial cell injury identified αB-crystallin as the mesothelial cell protein most consistently counter-regulated by LiCl. In vitro and in vivo overexpression of αB-crystallin triggered a fibrotic phenotype and PDF-like up-regulation of vascular endothelial growth factor (VEGF), CD31-positive cells, and TGF-ß-independent activation of TGF-ß-regulated targets. In contrast, αB-crystallin knockdown decreased VEGF expression and early mesothelial-to-mesenchymal transition. LiCl reduced VEGF release and counteracted fibrosis- and angiogenesis-associated processes. αB-crystallin in patient-derived mesothelial cells was specifically up-regulated in response to PDF and increased in peritoneal mesothelial cells from biopsies from pediatric patients undergoing PD, correlating with markers of angiogenesis and fibrosis. LiCl-supplemented PDF promoted morphological preservation of mesothelial cells and the submesothelial zone in a mouse model of chronic PD. Thus, repurposing LiCl as a cytoprotective PDF additive may offer a translatable therapeutic strategy to combat peritoneal membrane deterioration during PD therapy.


Assuntos
Cristalinas , Fibrose Peritoneal , Animais , Criança , Células Epiteliais , Humanos , Lítio , Camundongos , Peritônio/patologia , Proteômica , Fator A de Crescimento do Endotélio Vascular
10.
Front Immunol ; 12: 607204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854496

RESUMO

Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.


Assuntos
Comunicação Celular , Suscetibilidade a Doenças , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/metabolismo , Peritônio/imunologia , Peritônio/metabolismo , Células Estromais/metabolismo , Animais , Biomarcadores , Comunicação Celular/imunologia , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/patologia , Peritônio/patologia , Peritonite/complicações , Peritonite/etiologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
11.
Biomolecules ; 10(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987705

RESUMO

Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.


Assuntos
Fibrose/genética , Interleucina-17/genética , Diálise Peritoneal , Insuficiência Renal Crônica/genética , Soluções para Diálise/química , Fibrose/patologia , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Peritônio/metabolismo , Peritônio/patologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/terapia
12.
Biomolecules ; 10(8)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823646

RESUMO

Understanding and targeting the molecular basis of peritoneal solute and protein transport is essential to improve peritoneal dialysis (PD) efficacy and patient outcome. Supplementation of PD fluids (PDF) with alanyl-glutamine (AlaGln) increased small solute transport and reduced peritoneal protein loss in a recent clinical trial. Transepithelial resistance and 10 kDa and 70 kDa dextran transport were measured in primary human endothelial cells (HUVEC) exposed to conventional acidic, glucose degradation products (GDP) containing PDF (CPDF) and to low GDP containing PDF (LPDF) with and without AlaGln. Zonula occludens-1 (ZO-1) and claudin-5 were quantified by Western blot and immunofluorescence and in mice exposed to saline and CPDF for 7 weeks by digital imaging analyses. Spatial clustering of ZO-1 molecules was assessed by single molecule localization microscopy. AlaGln increased transepithelial resistance, and in CPDF exposed HUVEC decreased dextran transport rates and preserved claudin-5 and ZO-1 abundance. Endothelial clustering of membrane bound ZO-1 was higher in CPDF supplemented with AlaGln. In mice, arteriolar endothelial claudin-5 was reduced in CPDF, but restored with AlaGln, while mesothelial claudin-5 abundance was unchanged. AlaGln supplementation seals the peritoneal endothelial barrier, and when supplemented to conventional PD fluid increases claudin-5 and ZO-1 abundance and clustering of ZO-1 in the endothelial cell membrane.


Assuntos
Claudina-5/metabolismo , Soluções para Diálise/efeitos adversos , Dipeptídeos/administração & dosagem , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Transporte Biológico , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Diálise Peritoneal/efeitos adversos , Imagem Individual de Molécula , Junções Íntimas/efeitos dos fármacos
13.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823722

RESUMO

Peritoneal hyalinizing vasculopathy (PHV) represents the cornerstone of long-term peritoneal dialysis (PD), and especially characterizes patients associated with encapsulating peritoneal sclerosis. However, the mechanisms of PHV development remain unknown. A cross sectional study was performed in 100 non-selected peritoneal biopsies of PD patients. Clinical data were collected and lesions were evaluated by immunohistochemistry. In selected biopsies a microRNA (miRNA)-sequencing analysis was performed. Only fifteen patients (15%) showed PHV at different degrees. PHV prevalence was significantly lower among patients using PD fluids containing low glucose degradation products (GDP) (5.9% vs. 24.5%), angiotensin converting enzyme inhibitors (ACEIs) (7.5% vs. 23.4%), statins (6.5% vs. 22.6%) or presenting residual renal function, suggesting the existence of several PHV protective factors. Peritoneal biopsies from PHV samples showed loss of endothelial markers and induction of mesenchymal proteins, associated with collagen IV accumulation and wide reduplication of the basement membrane. Moreover, co-expression of endothelial and mesenchymal markers, as well as TGF-ß1/Smad3 signaling activation were found in PHV biopsies. These findings suggest that an endothelial-to-mesenchymal transition (EndMT) process was taking place. Additionally, significantly higher levels of miR-7641 were observed in severe PHV compared to non-PHV peritoneal biopsies. Peritoneal damage by GDPs induce miRNA deregulation and an EndMT process in submesothelial vessels, which could contribute to collagen IV accumulation and PHV.


Assuntos
MicroRNAs/genética , Diálise Peritoneal/efeitos adversos , Doenças Peritoneais/etiologia , Doenças Peritoneais/genética , Biópsia , Colágeno Tipo IV/metabolismo , Endotélio/patologia , Feminino , Humanos , Masculino , Mesoderma/patologia , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Peritônio/patologia , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Análise de Componente Principal , Proteína Smad3/metabolismo , Espanha
14.
Cell Death Dis ; 11(8): 647, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32811813

RESUMO

Despite their emerging relevance to fully understand disease pathogenesis, we have as yet a poor understanding as to how biomechanical signals are integrated with specific biochemical pathways to determine cell behaviour. Mesothelial-to-mesenchymal transition (MMT) markers colocalized with TGF-ß1-dependent signaling and yes-associated protein (YAP) activation across biopsies from different pathologies exhibiting peritoneal fibrosis, supporting mechanotransduction as a central driving component of these class of fibrotic lesions and its crosstalk with specific signaling pathways. Transcriptome and proteome profiling of the response of mesothelial cells (MCs) to linear cyclic stretch revealed molecular changes compatible with bona fide MMT, which (i) overlapped with established YAP target gene subsets, and were largely dependent on endogenous TGF-ß1 signaling. Importantly, TGF-ß1 blockade blunts the transcriptional upregulation of these gene signatures, but not the mechanical activation and nuclear translocation of YAP per se. We studied the role therein of caveolin-1 (CAV1), a plasma membrane mechanotransducer. Exposure of CAV1-deficient MCs to cyclic stretch led to a robust upregulation of MMT-related gene programs, which was blunted upon TGF-ß1 inhibition. Conversely, CAV1 depletion enhanced both TGF-ß1 and TGFBRI expression, whereas its re-expression blunted mechanical stretching-induced MMT. CAV1 genetic deficiency exacerbated MMT and adhesion formation in an experimental murine model of peritoneal ischaemic buttons. Taken together, these results support that CAV1-YAP/TAZ fine-tune the fibrotic response through the modulation of MMT, onto which TGF-ß1-dependent signaling coordinately converges. Our findings reveal a cooperation between biomechanical and biochemical signals in the triggering of MMT, representing a novel potential opportunity to intervene mechanically induced disorders coursing with peritoneal fibrosis, such as post-surgical adhesions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caveolina 1/metabolismo , Fibrose Peritoneal/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Caveolina 1/fisiologia , Caveolinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Diálise Peritoneal/métodos , Fibrose Peritoneal/genética , Fibrose Peritoneal/patologia , Peritônio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Aderências Teciduais/metabolismo , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP
17.
Cancers (Basel) ; 12(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098058

RESUMO

During peritoneal metastasis, cancer cells spread from abdominal solid tumors, disseminate through the peritoneal fluid and attach to and invade through mesothelial cells (MCs) that line the peritoneum. Intestinal adenocarcinomas originating in the mucosa infiltrate the submucosa, muscle layer, and serosa in order to finally colonize the peritoneal cavity. However, the mechanism by which metastatic cells leave the primary tumor and reach the peritoneal cavity has not been previously described. Hence, we investigate whether MCs lining visceral peritoneum, through a mesothelial-to-mesenchymal transition (MMT), are a source of carcinoma-associated fibroblasts (CAFs), which could contribute to cancer progression toward the peritoneal cavity. CAFs detected in biopsies from patients with superficially invasive colorectal cancer differed from locally advanced tumors. An aberrant accumulation of myofibroblasts expressing mesothelial markers was found in the stroma of deeply infiltrative tumors located in the neighborhood of a frequently activated mesothelium. We suggest that MMT is a key event in the early stages of peritoneal dissemination.

18.
Neoplasia ; 21(11): 1073-1084, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31734628

RESUMO

The role of prostaglandin (PG) F2α has been scarcely studied in cancer. We have identified a new function for PGF2α in ovarian cancer, stimulating the production of Prostate Transmembrane Protein, Androgen Induced 1 (PMEPA1). We show that this induction increases cell plasticity and proliferation, enhancing tumor growth through PMEPA1. Thus, PMEPA1 overexpression in ovarian carcinoma cells, significantly increased cell proliferation rates, whereas PMEPA1 silencing decreased proliferation. In addition, PMEPA1 overexpression buffered TGFß signaling, via reduction of SMAD-dependent signaling. PMEPA1 overexpressing cells acquired an epithelial morphology, associated with higher E-cadherin expression levels while ß-catenin nuclear translocation was inhibited. Notwithstanding, high PMEPA1 levels also correlated with epithelial to mesenchymal transition markers, such as vimentin and ZEB1, allowing the cells to take advantage of both epithelial and mesenchymal characteristics, gaining in cell plasticity and adaptability. Interestingly, in mouse xenografts, PMEPA1 overexpressing ovarian cells had a clear survival and proliferative advantage, resulting in higher metastatic capacity, while PMEPA1 silencing had the opposite effect. Furthermore, high PMEPA1 expression in a cohort of advanced ovarian cancer patients was observed, correlating with E-cadherin expression. Most importantly, high PMEPA1 mRNA levels were associated with lower patient survival.

19.
Front Pharmacol ; 10: 715, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417401

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a self-regulated physiological process required for tissue repair that, in non-controled conditions may lead to fibrosis, angiogenesis, loss of normal organ function or cancer. Although several molecular pathways involved in EMT regulation have been described, this process does not have any specific treatment. This article introduces a systematic review of effective natural plant compounds and their extract that modulates the pathological EMT or its deleterious effects, through acting on different cellular signal transduction pathways both in vivo and in vitro. Thereby, cryptotanshinone, resveratrol, oxymatrine, ligustrazine, osthole, codonolactone, betanin, tannic acid, gentiopicroside, curcumin, genistein, paeoniflorin, gambogic acid and Cinnamomum cassia extracts inhibit EMT acting on transforming growth factor-ß (TGF-ß)/Smads signaling pathways. Gedunin, carnosol, celastrol, black rice anthocyanins, Duchesnea indica, cordycepin and Celastrus orbiculatus extract downregulate vimectin, fibronectin and N-cadherin. Sulforaphane, luteolin, celastrol, curcumin, arctigenin inhibit ß-catenin signaling pathways. Salvianolic acid-A and plumbagin block oxidative stress, while honokiol, gallic acid, piperlongumine, brusatol and paeoniflorin inhibit EMT transcription factors such as SNAIL, TWIST and ZEB. Plectranthoic acid, resveratrol, genistein, baicalin, polyphyllin I, cairicoside E, luteolin, berberine, nimbolide, curcumin, withaferin-A, jatrophone, ginsenoside-Rb1, honokiol, parthenolide, phoyunnanin-E, epicatechin-3-gallate, gigantol, eupatolide, baicalin and baicalein and nitidine chloride inhibit EMT acting on other signaling pathways (SIRT1, p38 MAPK, NFAT1, SMAD, IL-6, STAT3, AQP5, notch 1, PI3K/Akt, Wnt/ß-catenin, NF-κB, FAK/AKT, Hh). Despite the huge amount of preclinical data regarding EMT modulation by the natural compounds of plant, clinical translation is poor. Additionally, this review highlights some relevant examples of clinical trials using natural plant compounds to modulate EMT and its deleterious effects. Overall, this opens up new therapeutic alternatives in cancer, inflammatory and fibrosing diseases through the control of EMT process.

20.
Front Physiol ; 10: 630, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191339

RESUMO

Background: Appetite disorders are frequent and scantly studied in peritoneal dialysis (PD) patients and are associated with malnutrition and cardiovascular complications. Objective: We investigated the relationship between uremic insulin resistance, pro-inflammatory cytokines, and appetite-related peptides release (ARPr) with eating-behavior disorders in PD patients. Methods: We included 42 PD patients (12 suffering anorexia, 12 obese with high food-intake, and 18 asymptomatic) and 10 controls. We measured blood levels of ARPr including orexigens [neuropeptide-Y (NPY), ghrelin, and nitric-oxide], anorexigens [cholecystokinin, insulin, corticotropin-releasing factor, leptin, and adiponectin (Ad)], and cytokines (TNF-α, sTNFα-R2, and IL-6) both at baseline and after administering a standard-food stimulus (SFS). We also measured the expression of TNF-α, leptin and Ad-encoding mRNAs in abdominal adipose tissue. We compared these markers with eating motivation measured by a Visual Analog Scale (VAS). Results: Anorexics showed both little appetite, measured by a VAS, and low levels of orexigens that remained constant after SFS, coupled with high levels of anorexigens at baseline and after SFS. Obeses showed higher appetite, increased baseline levels of orexigens, lower baseline levels of anorexigens and cytokines and two peaks of NPY after SFS. The different patterns of ARPr and cytokines pointed to a close relationship with uremic insulin resistance. In fact, the euglycemic-hyperglycemic clamp reproduced these disorders. In anorexics, TNF-α fat expression was increased. In obese patients, leptin expression in fat tissue was down-regulated and showed correlation with the appetite. Conclusion: In PD, appetite is governed by substances that are altered at baseline and abnormally released. Such modulators are controlled by insulin metabolism and cytokines and, while anorexics display inflammatory predominance, obese patients predominantly display insulin resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...